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1 Introduction

Probability Spaces

A probability space is a measure space (Ω,F , P ) with P (Ω) = 1.

The sample space Ω can be any set and is generally thought of as the collection of all possible outcomes of

some experiment or all possible states of some system. Elements of Ω are referred to as elementary outcomes.

The general idea is that we know all outcomes that could occur in principle, but not which one actually does.

The σ-�eld (or σ-algebra) F ⊆ 2Ω satis�es

(1) F is nonempty

(2) E ∈ F ⇒ EC ∈ F
(3) For any countable collection {Ei}i∈I ⊆ F ,

⋃
i∈I Ei ∈ F .

(Since
⋂

i∈I Ei =
(⋃

i∈I E
C
i

)C
, F is also closed under countable intersections.)

Elements of F are called events, and can be regarded as sets of elementary outcomes about which one can

say something meaningful. Before the experiment has been performed, a meaningful statement about E ∈ F
is P (E). Afterward, a meaningful statement is whether or not E occurred�that is, whether the experiment

resulted in an outcome ω ∈ E.

The probability measure P : F → [0, 1] satis�es

(1) P (Ω) = 1

(2) For any countable disjoint collection {Ei}i∈I , P
(⊔

i∈I Ei

)
=
∑

i∈I P (Ei).

The interpretation is that P (A) represents the chance that event A occurs (though there is no general

consensus about what that actually means).

Example 1.1. Rolling a fair die: Ω = {1, 2, 3, 4, 5, 6}, F = 2Ω, P (E) = |E|
6 .

Example 1.2. Flipping a (possibly biased) coin: Ω = {H,T}, F = 2Ω =
{
∅, {H}, {T}, {H,T}

}
, P satis�es

P ({H}) = p and P ({T}) = 1 − p for some p ∈ [0, 1]. (If p ∈ {0, 1}, then the outcome is guaranteed in

advance; deterministic processes also �t within the probability framework.)

Example 1.3. Random point in the unit interval: Ω = [0, 1], F = B[0,1] = Borel Sets, P = Lebesgue measure.

The experiment here is to pick a real number between 0 and 1 uniformly at random. Uniformity corresponds

to translation invariance, which is the primary de�ning property of Lebesgue measure. Indeed, one can fully

characterize this uniform probability measure by requiring that for each 0 ≤ a ≤ b ≤ 1, P ([a, b]) = b − a.

Observe that each outcome x ∈ [0, 1] has P ({x}) = P ([x, x]) = x− x = 0, so the experiment must result in

the realization of an outcome with probability zero.

Example 1.4. Standard normal distribution: Ω = R, F = B, P (E) = 1√
2π

∫
E
e−

x2

2 dx.

Example 1.5. Poisson distribution with rate λ > 0: Ω = N0, F = 2Ω, P (E) = e−λ
∑

k∈E
λk

k! .
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Why Measure Theory

Historically, probability was de�ned in terms of a �nite number of equally likely outcomes (Example 1.1) so

that |Ω| < ∞, F = 2Ω, and P (E) = |E|
|Ω| .

When the sample space is countably in�nite (Example 1.5), or �nite but the outcomes are not necessarily

equally likely (Example 1.2), one can speak of probabilities in terms of weighted outcomes by taking a

function p : Ω → [0, 1] with
∑

ω∈Ω p(ω) = 1 and setting P (E) =
∑

ω∈E p(ω).

For most practical purposes, this can be generalized to the case where Ω ⊆ R by taking a weighting function

f : Ω → [0,∞) with
∫
Ω
f(x) dx = 1 and setting P (E) =

∫
E
f(x) dx (Examples 1.3 and 1.4), but one must be

careful since the integral is not de�ned for all sets E; see Example 1.7.

Those who have taken undergraduate probability will recognize p and f as pmfs and pdfs, respectively. In

measure theoretic terms, f = dP
dm is the Radon-Nikodym derivative of P with respect to Lebesgue measure.

Similarly, p = dP
dc where c is counting measure on Ω.

Measure theory provides a unifying framework in which these ideas can be made rigorous, and it enables

further extensions to more general sample spaces and probability functions.

Also, note that in the formal axiomatic construction of probability, there is absolutely no mention of chance,

propensity, credence, etc., so we can use the theory without worrying about any philosophical issues.

Random Variables and Expectation

Given a measurable space (S,G), we de�ne an (S,G)-valued random variable to be a measurable function

X : Ω → S. This just means that for any E ∈ G, X−1(E) ∈ F .

In this class, the unquali�ed term �random variable� will refer to the case (S,G) = (R,B). (The collection of

Borel sets, B, is the smallest σ-�eld containing all of the open subsets of R.)

We typically think of X as an observable, or a measurement to be taken after the experiment has been

performed.

An extremely useful example is given by choosing any A ∈ F and de�ning the indicator function,

1A(ω) =

{
1, ω ∈ A

0, ω ∈ AC
.

Note that if (Ω,F , P ) is a probability space and X is an (S,G)-valued random variable, then X induces

the pushforward probability measure µ = P ◦X−1 on (S,G). Frequently, we will abuse notation and write

P (X ∈ B) = P
(
X−1(B)

)
= P ({ω ∈ Ω : X(ω) ∈ B}) for µ(B).

X also induces the sub-σ-�eld σ(X) =
{
X−1(E) : E ∈ G

}
⊆ F . If we think of Ω as the possible outcomes of

an experiment and X as a measurement to be performed, then σ(X) represents the insight that measurement

will a�ord us. (If we learn that X(ω) ∈ E, then we know ω ∈ X−1(E).)

In contrast with other areas of measure theory, in probability we are often interested in various sub-σ-�elds

F0 ⊆ F , which we think of in terms of information content.

For instance, if the experiment is rolling a six-sided die (Example 1.1), then F0 =
{
∅, {1, 3, 5}, {2, 4, 6},Ω

}
represents the information concerning the parity of the value rolled. If we only had access to this data, it

would not be meaningful to talk about the die landing on a number greater than 3 since {4, 5, 6} /∈ F0.
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In this case, one might choose instead to model the experiment as Ω0 = {even, odd}, F0 = 2Ω, P0({even}) =
P0({odd}) = 1

2 . There are often many valid models for an experiment; probability theory just tells us how to

proceed once we've settled on one that is deemed appropriate based on other empirical/practical/theoretical

considerations.

Note that the probability space (Ω,F , P ) from Example 1.1 extends (Ω0,F0, P0) in the sense that there is a

measurable surjection π : (Ω,F) → (Ω0,F0) with the property that P
(
π−1(E)

)
= P0(E) for all E ∈ F0�

namely π(j) =

even, 2 | j

odd, 2 ∤ j
.

We often want to be able to add new details and sources of randomness on the �y, so one takes it as a general

rule that probability should only study concepts and perform operations that are preserved by extensions of

the underlying space. For instance, probabilities of events or set operations like unions, intersections, and

complements are probabilistic concepts, but the equality (as sets) of two events is not, nor is their cardinality.

The expectation (or mean or expected value) of a real-valued random variable X on (Ω,F , P ) is de�ned as

E[X] =
∫
Ω
X(ω) dP (ω) whenever the integral is well-de�ned.

Expectation is generally interpreted as a weighted average which gives the `best guess' for the value of the

random quantity X.

We will study random variables and their expectations in greater detail soon. For now, the point is that many

familiar objects from undergraduate probability can be rigorously and simply de�ned using the language of

measure theory.

That said, it should be emphasized that probability is not just the study of measure spaces with total mass

one. As useful and necessary as the rigorous analytic foundations are, it is equally important to cultivate a

probabilistic way of thinking whereby one conceptualizes problems in terms of coin tossing, card shu�ing,

particle trajectories, and so forth.

Example 1.6. Probabilities aggregate like masses and areas, so it is natural that the �rst probability

measures one sees are discrete (characterized by mass functions) or absolutely continuous (characterized by

density functions). There are also `singular continuous measures,' but the need for a general theory is evident

without considering anything so exotic.

For instance, consider the mixture of the Unif(0, 1) and Pois(1) measures where one chooses an element of

[0, 1] ∪ N via the following procedure: Flip a fair coin. If it comes up heads, pick a real number uniformly

from [0, 1]. If it comes up tails, pick a nonnegative integer n with probability e−1/n!.

The measure describing this experiment is supported on an uncountable set and assigns positive probability

to some individual outcomes, so it is neither discrete nor continuous.

Example 1.7. When discussing the uniform distribution on [0, 1], we detailed how to �nd the probability

that a point is chosen in some subinterval of [0, 1], but one can imagine asking about events that are not so

clearly expressed in those terms, like �What is the probability that a rational number is chosen?� or �What

is the probability that a number is chosen with no 1's in its base 3 representation?�

For the �rst of these, we recall that P ({x}) = 0 for all x ∈ [0, 1]. Since Q is countable, we conclude that

P (rational) =
∑

x∈Q[0,1]
P ({x}) = 0.
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For the second, the event in question is uncountable (since one can bijectively map oneless ternary repre-

sentations to binary representations by halving the digits), so we don't get an easy answer from countable

additivity.

However, we can observe that not having a 1 in the �rst ternary digit means that a point was not chosen from

(1/3, 2/3). Not having a one in the second digit means a point was not chosen from (1/9, 2/9) or (7/9, 8/9)

either. In general, no 1 in the nth place precludes the chosen point from lying in the open middle third of

the 2n−1 intervals of length 1/3n that have not already been ruled out. The set of forbidden points thus has

probability
∑∞

n=1
2n−1

3n = 1
2 · 2/3

1−2/3 = 1, so the probability of choosing a point in the Cantor set is 0.

An example of a subset of [0, 1] which has no well-de�ned probability under this measure is given by the

following construction:

De�ne an equivalence relation on [0, 1) by x ∼ y if x− y ∈ Q.

Using the axiom of choice, let E ⊆ [0, 1) consist of exactly one point from each equivalence class.

For q ∈ Q[0,1), de�ne Eq = E + q (mod 1). By construction Eq

⋂
Er = ∅ for r ̸= q and

⋃
q∈Q[0,1)

Eq = [0, 1).

Thus, by countable additivity, we must have

1 = m ([0, 1)) = m

( ⊔
q∈Q[0,1)

Eq

)
=

∑
q∈Q[0,1)

m(Eq).

However, Lebesgue measure is translation invariant, so m(Eq) = m(E) for all q.

We see that m(E) is not well-de�ned as m(E) = 0 implies 1 = 0 and m(E) > 0 implies 1 = ∞.

The existence of non-measurable sets can be proved using slightly weaker assumptions than the axiom of

choice (such as the Boolean prime ideal theorem), but it has been shown that the existence of non-measurable

sets is not provable in Zermelo-Fraenkel alone.

In three or more dimensions, the Banach-Tarski paradox shows that in ZFC, there is no �nitely additive

measure de�ned on all subsets of Euclidean space that is invariant under translation and rotation.

(The paradox is that one can cut a unit ball into �ve pieces and reassemble them using only rigid motions

to obtain two disjoint unit balls.)
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2 First Properties

We will delve into the technicalities of constructing probability spaces presently, but �rst let's explore some

consequences of the de�nition to better understand the general framework.

Probability Measures

The following simple facts are extremely useful and will be employed frequently throughout this course.

Theorem 2.1. Let P be a probability measure on (Ω,F).

(i) Complements For any A ∈ F , P (AC) = 1− P (A).

(ii) Monotonicity For any A,B ∈ F with A ⊆ B, P (A) ≤ P (B).

(iii) Subadditivity For any countable collection {Ei}∞
i=1 ⊆ F , P (

⋃∞
i=1 Ei) ≤

∑∞
i=1 P (Ei).

(iv) Continuity from below If Ai ↗ A (i.e. A1 ⊆ A2 ⊆ ... and
⋃∞

i=1 Ai = A), then lim
n→∞

P (An) = P (A).

(v) Continuity from above If Ai ↘ A =
⋂∞

i=1 Ai, then lim
n→∞

P (An) = P (A).

Proof.

For (i), 1 = P (Ω) = P (A ⊔AC) = P (A) + P (AC) by countable additivity.

For (ii), P (B) = P (A ⊔ (B \A)) = P (A) + P (B \A) ≥ P (A).

For (iii), we �disjointify� the sets by de�ning F1 = E1 and Fi = Ei \
(⋃i−1

j=1 Ej

)
for i > 1, and observe that⋃n

i=1 Fi =
⋃n

i=1 Ei for all n ∈ N ∪ {∞}. Since Fi ⊆ Ei for all i, we have

P

( ∞⋃
i=1

Ei

)
= P

( ∞⊔
i=1

Fi

)
=

∞∑
i=1

P (Fi) ≤
∞∑
i=1

P (Ei).

For (iv), set B1 = A1 and Bi = Ai \ Ai−1 for i > 1, and note that the Bi's are disjoint with
⋃n

i=1 Bi = An

and
⋃∞

i=1 Bi = A. Then

P (A) = P

( ∞⊔
i=1

Bi

)
=

∞∑
i=1

P (Bi) = lim
n→∞

n∑
i=1

P (Bi)

= lim
n→∞

P

(
n⊔

i=1

Bi

)
= lim

n→∞
P (An).

For (v), if A1 ⊇ A2 ⊇ ... and A =
⋂∞

i=1 Ai, then AC
1 ⊆ AC

2 ⊆ ... and AC = (
⋂∞

i=1 Ai)
C

=
⋃∞

i=1 A
C
i , so it

follows from (i) and (iv) that

P (A) = 1− P (AC) = 1− lim
n→∞

P (AC
n ) = lim

n→∞

(
1− P (AC

n )
)
= lim

n→∞
P (An). □

We leave it as an easy exercise to show that one also has the union rule P (A∪B) = P (A)+P (B)−P (A∩B).

7



Sigma Algebras

We now review some some basic facts about σ-�elds. Our �rst observation is immediate from the de�nition.

Proposition 2.2. If {Fi}i∈I is a collection of σ-algebras on Ω, then
⋂

i∈I Fi is also a σ-algebra on Ω.

It follows from Proposition 2.2 that for any collection of sets C ⊆ 2Ω, there is a smallest σ-algebra containing

C�namely, the intersection of all σ-algebras containing C. This is called the σ-algebra generated by C and is

denoted by σ(C).

Note that if F is a σ-algebra and C ⊆ F , then σ(C) ⊆ F .

An important class of examples are the Borel σ-algebras: If (X, T ) is a topological space, then BX = σ(T )

is called the Borel σ-algebra.

Recall that in Rn with the standard topology, U ⊆ R is open if for every x ∈ U , there is an ε = ε(x) > 0

such that the ball Bε(x) =
{
y ∈ Rn : ∥x− y∥ < ε

}
is contained in U .

Lemma 2.3. Every open subset of R is a countable disjoint union of open intervals.

Proof. De�ne an equivalence relation on the open set U ⊆ R by x ∼ y if
(
min{x, y},max{x, y}

)
⊆ U .

The equivalence class containing x ∈ U is thus the maximal open subinterval of U containing x.

(This relation clearly symmetric in x and y, and we always have (min{x, x},max{x, x}) = (x, x) = ∅ ⊆ U ,

so it's re�exive as well. To see that it's transitive, note that if x, y, z ∈ U with x ∼ y and y ∼ z, then:

x ≤ y ≤ z implies (x, z) = (x, y) ∪ {y} ∪ (y, z) ⊆ U ; x ≤ z ≤ y implies (x, z) ⊆ (x, y) ⊆ U ; and similarly for

y ≤ x ≤ z, y ≤ z ≤ x, z ≤ y ≤ x, z ≤ x ≤ y.)

Let I denote the set of equivalence classes under ∼. Then the elements of I are disjoint open subintervals

of U and every x ∈ U belongs to some I ∈ I. Moreover, each I ∈ I contains a rational, so I is countable.

It follows that U =
⊔

I∈I I is an example of the asserted decomposition. □

Theorem 2.4. The Borel σ-algebra for R with the standard topology is generated by each of the following:

a. The �nite open intervals E1 =
{
(a, b) : a, b ∈ R with a < b

}
b. The �nite closed intervals E2 =

{
[a, b] : a, b ∈ R with a < b

}
c. The �nite half-open intervals E3 =

{
(a, b] : a, b ∈ R with a < b

}
or E4 = {[a, b) : a, b ∈ R with a < b

}
d. The open rays E5 =

{
(a,∞) : a ∈ R

}
or E6 =

{
(−∞, b) : b ∈ R

}
e. The closed rays E7 =

{
[a,∞) : a ∈ R

}
or E8 =

{
(−∞, b] : b ∈ R

}
Proof. B is the smallest σ-algebra containing the open subsets of R. Since open intervals are open sets, B
contains the σ-algebra generated by the open intervals. Since every open set is a countable union of open

intervals, the σ-algebra generated by the open intervals contains B as well, hence the two are equal.

As every open interval is �nite or a countable union of �nite open intervals�(a,∞) =
⋃∞

n=0(a+n, a+n+2),

for example�we conclude that σ(E1) = B.
Likewise, the complement of a �nite closed interval is the union of two open intervals, so σ(E2) = B.
Similarly, (a, b] =

⋂∞
n=1(a, b +

1
n ), so E3 ⊆ σ(E1) = B and thus σ(E3) ⊆ B; and (a, b) =

⋃∞
n=1(a, b −

1
n ], so

E1 ⊆ σ(E3) and thus B = σ(E1) ⊆ σ(E3).
The other cases are similar. □
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Remark 2.5. For any S ⊆ [8], B contains every set in ES =
⋃

i∈S Ei and for any i ∈ S, B = σ(Ei) ⊆ σ(ES),
so the Borels are generated by any union of the Ei's as well. Also, the density of Q in R enables us to

take any of the above collections restricted to have rational endpoints if we so desire. For example, given

a < b, there exist rational sequences an ↘ a and bn ↗ b so that (a, b) =
⋃∞

n=1(an, bn). It follows that

σ
({

(a, b) : a, b ∈ Q
})

= σ(E1) = B. This is nice since it allows one to work with countable generating sets.

Our main technical result about σ-algebras is Dynkin's π-λ Theorem.

De�nition. A nonempty collection of sets P ⊆ 2Ω is called a π-system if A,B ∈ P implies A ∩B ∈ P.

De�nition. A collection of sets L ⊆ 2Ω is called a λ-system if

(1) Ω ∈ L
(2) If A,B ∈ L and A ⊆ B, then B \A ∈ L
(3) If An ∈ L with An ↗ A, then A ∈ L

Theorem 2.6. If P is a π-system and L is a λ-system with P ⊆ L, then σ(P) ⊆ L.

Proof. We begin by observing that the intersection of any number of λ-systems is a λ-system, so for any

collection C, there is a smallest λ-system ℓ(C) containing C. Thus it will su�ce to show that ℓ(P) is a

σ-algebra since then σ(P) ⊆ ℓ(P) ⊆ L.

Moreover, λ-systems that are closed under intersections are σ-algebras�EC = Ω \E, E ∪F = (EC ∩FC)C ,

and
⋃n

k=1 Ek ↗
⋃∞

k=1 Ek�so we need only demonstrate that ℓ(P) is a π-system.

To this end, let A ∈ ℓ(P) and de�ne LA =
{
E : A ∩ E ∈ ℓ(P)

}
. Since A ∩ Ω = A ∈ ℓ(P), we have Ω ∈ LA.

Also, if E,F ∈ LA with E ⊆ F , then A∩E ⊆ A∩F are in ℓ(P), so A∩ (F \E) = (A∩F ) \ (A∩E) ∈ ℓ(P),

showing that LA is closed under subset di�erences as well. Finally, if E1 ⊆ E2 ⊆ · · · is a sequence of sets in

LA with E =
⋃∞

n=1 En, then A∩E1 ⊆ A∩E2 ⊆ · · · is a sequence in ℓ(P), hence A∩E =
⋃∞

n=1(A∩En) ∈ ℓ(P).

We have thus shown that LA is a λ-system for every A ∈ ℓ(P).

Now P is a π-system, so if C ∈ P, then P ⊆ LC , hence ℓ(P) ⊆ LC . It follows that if B ∈ ℓ(P), then B ∈ LC ,

so B ∩ C ∈ ℓ(P). As this is true for all C ∈ P, we see that for every B ∈ ℓ(P), P ⊆ LB , hence ℓ(P) ⊆ LB .

This completes the proof since A,B ∈ ℓ(P) implies A ∈ LB and thus A ∩B ∈ ℓ(P). □

It is not especially important to commit the details of the preceding argument to memory, but it worth

seeing once and you should de�nitely know the statement of the theorem. Though it seems a bit obscure

upon �rst encounter, its use in probability is ubiquitous.

In typical applications, we show that a property holds on a π-system that we know generates the σ-algebra

of interest. We then show that the collection of all sets for which the property holds is a λ-system in order

to conclude that it holds on the entire σ-algebra.

Example 2.7. Suppose P1 and P2 are probabilities on (R,B) with P1

(
(−∞, a]

)
= P2

(
(−∞, a]

)
for all a ∈ R.

Since the right-closed rays form form a π-system that generates the Borel sets, we can conclude that P1 and

P2 agree on B by showing that
{
A ⊆ B : P1(A) = P2(A)

}
is a λ-system.

To see that this is so, note that P1(Ω) = 1 = P2(Ω); if P1(A) = P2(A) and P1(B) = P2(B) with A ⊆ B,

then P1(B \A) = P1(B)− P1(A) = P2(B)− P2(A) = P2(B \A); and if An ↗ A with P1(An) = P2(An) for

all n, then P1(A) = limn→∞ P1(An) = limn→∞ P2(An) = P2(A).
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3 Constructing Probability Spaces

Now that we have some familiarity working with probability spaces, we turn our attention to the problem

of constructing them.

We begin by dispensing with the easy case: If Ω is any countable set, its outcomes can be enumerated as

Ω = {ω1, ω2, . . .}. Given any sequence of nonnegative numbers {pk}∞k=1 with
∑∞

k=1 pk = 1, we can de�ne a

probability measure P on (Ω, 2Ω) by P (E) =
∑

k:ωk∈E pk.

Conversely, given any probability Q on (Ω, 2Ω), the sequence {qk}∞k=1 de�ned by qk = Q{ωk} is nonnegative

and sums to 1, so this fully characterizes such discrete probability measures.

Note that if Ω is countably in�nite, it cannot support a uniform probability since P{ω} = c for all ω ∈ Ω

implies 1 = P (Ω) =
∑

ω∈Ω P{ω} =
∑∞

k=1 c. If c = 0, this gives 1 = 0, and if c > 0, it gives 1 = ∞.

To treat uncountable sample spaces, we take inspiration from the case of the uniform distribution on [0, 1].

There, we said that the probability is characterized by P
(
[a, b]

)
= b− a for all 0 ≤ a ≤ b ≤ 1.

Observe that this implies P{a} = P ([a, a]) = 0, so (a, b], [a, b), and (a, b) also are assigned probability b− a.

(For instance, b− a = P
(
[a, b]

)
= P

(
(a, b] ⊔ {a}

)
= P

(
(a, b]

)
+ P{a} = P

(
(a, b]

)
.)

As such, we at least know how to de�ne P on J = {J ⊆ [0, 1] : J is an interval}. As J is not closed under

unions, it is not a σ-algebra, but it is a start.

De�nition. A collection of subsets S of Ω is called a semialgebra if

(1) ∅,Ω ∈ S
(2) S1, S2 ∈ S implies S1 ∩ S2 ∈ S
(3) If S ∈ S, there exist disjoint T1, . . . , Tn ∈ S with SC =

⊔n
k=1 Tk

Note that parts (1) and (2) imply that semialgebras are π-systems.

Example 3.1. For any nonempty interval I ⊆ R, JI = {J ⊆ I : J is an interval} is a semialgebra. Indeed,

∅ = (a, a] and Ω = I belong to JI , the intersection of two intervals is an interval, and the complement of an

interval is an interval or disjoint union of two intervals.

Example 3.2. On R, we can de�ne the collection of h-intervals by H =
{
(a, b] : −∞ ≤ a ≤ b ≤ ∞

}
with the understanding (a,∞] = (a,∞). Arguing as in the previous example, one easily checks that H is a

semialgebra.

Example 3.3. If S1 and S2 are semialgebras over Ω1 and Ω2, thenR =
{
A1×A2 : Ak ∈ Sk

}
is a semialgebra

over Ω1 ×Ω2: R certainly contains ∅ and Ω1 ×Ω2; A1 ×A2, B1 ×B2 ∈ R implies (A1 ×A2) ∩ (B1 ×B2) =

(A1 ∩B1)× (A2 ∩B2) ∈ R; and if A×B ∈ R, there exist {Sk}mk=1 ⊆ S1, {Tℓ}nℓ=1 ⊆ S2 with AC =
⊔m

k=1 Sk

and BC =
⊔n

ℓ=1 Tℓ, hence

(A×B)C = (AC×B)
⊔

(A×BC)
⊔

(AC×BC) =

(
m⊔

k=1

(Sk ×B)

)⊔(
n⊔

ℓ=1

(A× Tℓ)

)⊔(
m⊔

k=1

n⊔
ℓ=1

(Sk × Tℓ)

)
.

Iterating this procedure shows that if Sk is a semialgebra over Ωk for k = 1, . . . , n, then the collection of

rectangles
{
A1 × · · · ×An : Ak ∈ Sk

}
is a semialgebra over Ω1 × · · · × Ωn.

In particular,
{
J1 × · · · × Jd : each Jk is an interval

}
(or an h-interval) is a semialgebra over Rd.
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Example 3.4. If S is a semialgebra over Ω and A ⊆ Ω, then SA =
{
S ∩ A : S ∈ S

}
is a semialgebra

over A since A = Ω ∩ A and ∅ = ∅ ∩ A belong to SA; A1, A2 ∈ SA implies that there exist S1, S2 ∈ S with

Ai = Si ∩ A so that A1 ∩ A2 = (S1 ∩ A) ∩ (S2 ∩ A) = (S1 ∩ S2) ∩ A ∈ SA; and if B = S ∩ A ∈ SA, then

BC = A \B = A \ S = A ∩ SC = A ∩ (
⊔n

k=1 Tk) =
⊔n

k=1(Tk ∩A) ∈ SA. (Note that SA ⊆ S i� A ∈ S.)

De�nition. A (probability) protomeasure on a semialgebra S over Ω is a function P0 : S → [0, 1] with

(1) P0(∅) = 0 and P0(Ω) = 1

(2) If S1, . . . , Sn ∈ S are disjoint with S =
⊔n

i=1 Si ∈ S, then P0(S) =
∑n

i=1 P0(Si)

(3) If S1, S2 . . . ∈ S with S =
⋃∞

i=1 Si ∈ S, then P0 (S) ≤
∑∞

i=1 P (Si)

(The countable subadditivity condition lets us replace �nite additivity with �nite superadditivity if desired;

nonnegativity and �nite additivity make P0(∅) = 0 redundant.)

Example 3.5. Our length function λ0(Ja,b) = b − a for any interval Ja,b with endpoints a ≤ b is a pro-

tomeasure on J .

Indeed, for any 0 ≤ a ≤ b ≤ 1, λ0(Ja,b) = b− a ∈ [0, 1], λ0(∅) = λ0

(
(a, a)

)
= 0, and λ0([0, 1]) = 1.

Now suppose that Ja1,b1 , . . . , Jan,bn are disjoint intervals with J =
⋃n

k=1 Jak,bk also an interval. By reindexing

if need be, we can assume that a1 ≤ · · · ≤ an. Since the subintervals are disjoint, we must have that

ak+1 ≥ bk, and since J is an interval as well, we must have that ak+1 ≤ bk. It follows that

λ0(J) = bn − a1 =

n−1∑
k=1

(ak+1 − ak) + (bn − an) =

n−1∑
k=1

(bk − aj) + (bn − an) =

n∑
k=1

λ0(Jak,bk),

hence λ0 is �nitely additive.

Now suppose that Ja1,b1 , Ja2,b2 , . . . is a sequence of intervals with
⋃∞

k=1 Jak,bk = Ja,b. Fix ε > 0 and de�ne

Jk = (αk, βk) with αk = ak − ε
2k+1 and βk = bk + ε

2k+1 so that λ0(Jk) = λ0(Jak,bk) +
ε
2k

and
⋃∞

k=1 Jk ⊇
[a+ ε

2 , b−
ε
2 ]. Compactness dictates that there exist {k(1), . . . , k(n)} ⊆ N such that [a+ ε

2 , b−
ε
2 ] ⊆

⋃n
i=1 Jk(i),

αk(1) < · · · < αk(n), and αk(i+1) < βk(i) < βk(i+1) for i < n�otherwise, Jk(i) or Jk(i+1) could be omitted�so

∞∑
k=1

λ0(Jak,bk) ≥
n∑

i=1

λ0(Jak(i),bk(i)
) =

n∑
i=1

[λ0(Jk(i))− ε
2k(i) ]

≥
n∑

i=1

(βk(i) − αk(i))−
∞∑
k=1

ε
2k

≥ βk(n) − αk(n) +

n−1∑
i=1

(αk(i+1) − αk(i))− ε

= βk(n) − αk(1) − ε ≥ (b− ε
2 )− (a+ ε

2 )− ε = λ0(Ja,b)− 2ε.

As ε was arbitrary, we see that λ0 is countably subadditive as well.

De�nition. A function F : R → R which is nondecreasing (so x < y implies F (x) ≤ F (y)) and right-

continuous (so F (x) = limy→x+ F (y)) is called a distribution function.

Monotonicity ensures that α = limx→−∞ F (x) and β = limx→∞ F (x) exist in R = R ∪ {±∞}. If α = 0 and

β = 1, we say that F is a probability distribution function.

Example 3.6. If F is a probability distribution function, then µ0

(
(a, b]

)
= F (b) − F (a) is a probability

protomeasure on the semialgebra H of h-intervals. The argument here is pretty much the same as in the

previous example�which essentially corresponds to the case F (x) = x1[0,1](x) + 1(1,∞)(x)�but we need to

be a little careful with countable subadditivity.
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To this end, suppose that
⋃∞

k=1(ak, bk] = (a, b], where we assume that a, b ∈ R to begin with. Given ε > 0,

right-continuity ensures there is a δ > 0 with F (a + δ) − F (a) < ε. Likewise, there exist δj > 0 such that

F (bj + δj)−F (bj) < ε/2j . The open intervals (aj , bj + δj) cover the compact set [a+ δ, b], so there is a �nite

subcover. By discarding any (aj , bj + δj) that is contained in a larger one and reindexing, we may assume

[a+ δ, b] ⊆
⋃n

j=1(aj , bj + δj), a1 < · · · < an, and bj + δj ∈ (aj+1, bj+1 + δj+1) for j < n. It follows that

µ0

(
(a, b]

)
≤ F (b)− F (a+ δ) + ε ≤ F (bn + δn)− F (a1) + ε

= F (bn + δn)− F (an) +

n−1∑
j=1

[
F (aj+1)− F (aj)

]
+ ε

≤ F (bn + δn)− F (an) +

n−1∑
j=1

[
F (bj + δj)− F (aj)

]
+ ε

≤
n∑

j=1

[
F (bj) +

ε
2j − F (aj)

]
+ ε ≤

n∑
j=1

µ0

(
(aj , bj ]

)
+ 2ε ≤

∞∑
j=1

µ0

(
(aj , bj ]

)
+ 2ε.

To treat the case where (a, b] is in�nite, observe that the boundary conditions on F ensure there is an M > 0

such that F (−M) < ε and F (M) > 1−ε. As the preceding argument shows that I = (max{a,−M},min{b,M})
satis�es µ0(I) ≤

∑∞
j=1 µ0

(
(aj , bj ]

)
+ 2ε, and we know that µ0

(
(a, b]) ≤ µ0(I) + 2ε, we conclude that µ0 is

indeed countably subadditive.

Now that we have a nice protomeasure λ0 on J , a natural �rst guess would be to try to extend it to

B1 := {countable unions of sets in J }.
Unfortunately, this is not a σ-algebra. For instance, consider the the Cantor set K from Example 1.7. We

know that KC can be written as a countable union of the open middle-thirds sets
(
1
3 ,

2
3

)
,
(
1
9 ,

2
9

)
,
(
7
9 ,

8
9

)
, . . .

and thus belongs to B1. However, (KC)C = K /∈ B1. Indeed, suppose that K =
⋃

i∈I Ji with I countable

and each Ji ∈ J . If any Ji contained two points a < b, then we would have (a, b) ⊆ Ji. But this is impossible

because choosing n so that 1
3n < b − a shows that there is an element of (a, b) with a 1 in its nth ternary

digit. However, the Ji cannot all be singletons either as this would imply that K was countable.

Instead, we remain patient and �rst consider the set B0 :=
{
�nite unions of sets in J

}
. The following

proposition will make it easier to extend our protomeasure to B0.

Proposition 3.7. If S is a semialgebra,
{
�nite unions of sets in S

}
=
{
�nite disjoint unions of sets in S

}
.

Proof. If S1, . . . , Sm ∈ S, we can de�ne

Ri = Si \
i−1⋃
j=1

Sj =

i−1⋂
j=1

(Si ∩ SC
j ) =

i−1⋂
j=1

(
Si ∩

nj⊔
k=1

Tj,k

)
=

i−1⋂
j=1

[
nj⊔
k=1

(Si ∩ Tj,k)

]
with each Si ∩ Tj,k ∈ S. As this in turn can be written as a �nite disjoint union of �nite intersections of

sets in S, we see that
⋃m

i=1 Si =
⊔m

i=1 Ri can be expressed as a �nite disjoint union of sets in S. The other
inclusion is immediate. □

De�nition. A collection of subsets of Ω is called an algebra if it contains ∅ and is closed under complements

and �nite unions.

Algebras are also closed under �nite intersections since A1, . . . , An ∈ A implies
⋂n

i=1 Ai =
(⋃n

i=1 A
C
i

)C ∈ A.
12



Proposition 3.8. If S is a semialgebra over Ω, then S = {�nite disjoint unions of sets in S} is an algebra.

Proof. In view of Proposition 3.7, we can equivalently de�ne S = {�nite unions of sets in S}. With this

characterization, we readily check that S contains ∅, and if Ai =
⋃ni

j=1 Si,j with each Si,j ∈ S for i = 1, . . . , n,

then
⋃n

i=1 Ai =
⋃n

i=1

⋃ni

j=1 Si,j is a �nite union of sets in S and thus belongs to S. Finally, suppose that

A =
⋃m

k=1 Sk with {Sk}mk=1 ⊆ S. Then AC =
⋂m

k=1 S
C
i =

⋂m
k=1

⊔ni

ℓ=1 Tk,ℓ with each Tk,ℓ ∈ S. By the

distributivity property of intersections over unions, AC is a �nite union of �nite intersections of sets in S
and thus belongs to S. □

Example 3.9. Suppose Γ is an in�nite set. Then A = {A ⊆ Γ : A or AC is �nite} is an algebra. To check

that this is the case, we �rst observe that ∅ is �nite and so belongs to A. Next, A ∈ A implies A = (AC)C

or AC is �nite; in either case AC ∈ A. Finally if A,B ∈ A, either A and B are both �nite, so A∪B is �nite,

or at least one of A,B has a �nite complement, so (A ∪B)C = AC ∩BC ⊆ AC , BC is �nite.

A is not necessarily a σ-algebra, though. For instance, if Γ = N and Ak = {2k} ∈ A, then
⋃∞

k=1 Ak = 2N /∈ A.

De�nition. A (probability) premeasure on an algebra A is a function P̃ : A → [0, 1] satisfying P̃ (∅) = 0,

P̃ (Ω) = 1, and for any countable disjoint collection {Ai}i∈I ⊆ A such that
⊔

i∈I Ai ∈ A, P̃
(⊔

i∈I Ai

)
=∑

i∈I P̃ (Ai).

Note that since A is only an algebra, the union of an in�nite collection of sets in A need not belong to A;

we just want to ensure that our premeasure is countably additive in those cases where it does.

Also, algebras are closed under complements and �nite unions/intersections so nonnegativity and the count-

able additivity condition implies that premeasures are monotone and countably subadditive (when applicable)

by the arguments in Theorem 2.1.

Proposition 3.10. Suppose P0 is a protomeasure on the semialgebra S and S is the algebra generated by S.
De�ne the set function P̃ on A by P̃ (

⊔n
i=1 Si) =

∑n
i=1 P0(Si). Then P̃ is a premeasure on S with P̃ |S = P0.

Proof. To see that P̃ is well-de�ned, suppose that A =
⊔m

i=1 Si ∈ A can also be written as A =
⊔n

j=1 Rj ,

Then Si = Si ∩ A = Si ∩
(⊔n

j=1 Rj

)
=
⊔n

j=1(Si ∩ Rj) with Si ∩ Rj ∈ S. Similarly, Rj =
⊔m

i=1(Si ∩ Rj), so

�nite additivity of P0 gives

m∑
i=1

P0(Si) =

m∑
i=1

P0

 n⊔
j=1

(Si ∩Rj)

 =

m∑
i=1

n∑
j=1

P0(Si ∩Rj)

=

n∑
j=1

m∑
i=1

P0(Si ∩Rj) =

n∑
j=1

P0

(
m⊔
i=1

(Si ∩Rj)

)
=

n∑
j=1

P0(Rj).

Also, P̃ (S) = P0(S) for all S ∈ S by de�nition, and monotonicity then implies 0 = P̃ (∅) ≤ P̃ (A) ≤ P̃ (Ω) = 1

for all A ∈ S.
Next, if A1, . . . , Am ∈ S are disjoint, then �nite additivity of P0 shows that, in obvious notation,

P̃

(
m⊔
i=1

Ai

)
= P̃

 m⊔
i=1

ni⊔
j=1

Si,j

 =
∑
i,j

P0(Si,j) =

m∑
i=1

P̃ (Ai).
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Finally, suppose that {Ai}i∈N is a countable collection of disjoint sets in S with A =
⊔

i∈N Ai ∈ S. Since

Ai =
⊔ni

j=1 Si,j with Si,j ∈ S, hence
∑

i∈N P̃ (Ai) =
∑

i∈N
∑ni

j=1 P0(Si,j), we may assume without loss of

generality that each Ai ∈ S.
As A =

⊔n
k=1 Tk with Tk ∈ S, countable subadditivity of P0 gives P0(Tk) = P0

(⊔
i∈N(Ai ∩ Tk)

)
≤∑

i∈N P0(Ai ∩ Tk) and �nite additivity of P0 gives P0(Ai) = P0 (
⊔n

k=1(Ai ∩ Tk)) =
∑n

k=1 P0(Ai ∩ Tk),

thus

P̃ (A) =

n∑
k=1

P0(Tk) ≤
n∑

k=1

∞∑
i=1

P0(Ai ∩ Tk) =

∞∑
i=1

n∑
k=1

P0(Ai ∩ Tk) =

∞∑
i=1

P0(Ai) =

∞∑
i=1

P̃ (Ai)

where the interchange of summation is justi�ed by the nonnegativity of P0.

For the reverse inequality, let Bn =
⊔n

i=1 Ai and Cn = A ∩ BC
n . Then A1, . . . , An, Cn ∈ S are disjoint, so

�nite additivity of P̃ implies P̃ (A) = P̃ (A1)+ · · ·+ P̃ (An)+ P̃ (Cn) ≥ P̃ (A1)+ · · ·+ P̃ (An). Letting n → ∞
yields P̃ (A) ≥

∑∞
i=1 P̃ (Ai). □

The next step is to extend our premeasure to a set function de�ned on all of 2Ω. We will generally lose

countable additivity in the process, but we'll cross that bridge when we come to it.

De�nition. A (probability) outer measure on Ω is a function P ∗ : 2Ω → [0, 1] satisfying P ∗(∅) = 0 and

P ∗(Ω) = 1; P ∗(A) ≤ P ∗(B) whenever A ⊆ B; and for any countable collection {Ai}i∈I of sets in Ω,

P ∗ (⋃
i∈I Ai

)
≤
∑

i∈I P
∗(Ai).

Proposition 3.11. Suppose that P̃ is a premeasure on an algebra A and de�ne for each E ⊆ Ω

P ∗(E) = inf

{ ∞∑
i=1

P̃ (Ai) : Ai ∈ A and E ⊆
∞⋃
i=1

Ai

}
.

Then P ∗ is an outer measure on Ω.

Proof. Note that we can take Ai = ∅ for i > n, so the in�mum includes sums over �nite covers as well.

Also, P̃ is nonnegative and every set in 2Ω is covered by Ω, so P ∗ is well-de�ned with 0 ≤ P ∗(E) ≤ P̃ (Ω) = 1

for all E ⊆ Ω.

Now ∅ ⊆ ∅, and countable subadditivity of P̃ ensures that if Ω ⊆
⋃∞

i=1 Ai, then P̃ (Ω) ≤
∑∞

i=1 P̃ (Ai)�

the union is necessarily Ω in this case and thus belongs to A. It follows that P ∗(∅) ≤ P̃ (∅) = 0 and

P ∗(Ω) ≥ P̃ (Ω) = 1 as well, hence P ∗ behaves appropriately on ∅,Ω.
Next, if A ⊆ B, then any cover of B also covers A, so P ∗(A) ≤ P ∗(B).

Finally, let ε > 0 and consider any countable collection {Ai}∞i=1. For each i ∈ N, there's a countable cover

{Bi,j}∞j=1 of Ai with
∑∞

j=1 P̃ (Bi,j) ≤ P ∗(Ai) + ε/2i. It follows that
⋃∞

i=1 Ai ⊆
⋃∞

i=1

⋃∞
j=1 Bi,j , hence

P ∗

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

∞∑
j=1

P̃ (Bi,j) ≤
∞∑
i=1

[
P ∗(Ai) + ε/2i

]
=

∞∑
i=1

P ∗(Ai) + ε. □

De�nition. If P ∗ is an outer measure on Ω, we say that A ⊆ Ω is P ∗-measurable if for each E ⊆ Ω,

P ∗(E) = P ∗(E ∩A) + P ∗(E ∩AC).

Note that P ∗ is countably subadditive, so one only needs to check that P ∗(E) ≥ P ∗(E ∩A) + P ∗(E ∩AC).
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While this notion of `splitting events nicely' is not super obvious or intuitive, the following Carathéodory

extension theorem shows that it is extremely useful.

Theorem 3.12. If P ∗ is an outer measure on Ω, then the collection M of P ∗-measurable sets is a σ-algebra

and the restriction of P ∗ to M is a measure.

Proof. ∅ ∈ M since P ∗(E) = 0+P ∗(E ∩Ω) = P ∗(E ∩∅)+P ∗(E ∩∅C), and M is closed under complements

since the de�nition of P ∗-measurability is symmetric in A and AC .

Next, if A,B ∈ M and E ⊆ Ω, subadditivity and A ∪B = (A ∩B) ∪ (A ∩BC) ∪ (AC ∩B) gives

P ∗(E) = P ∗(E ∩A) + P ∗(E ∩AC)

=
[
P ∗((E ∩A) ∩B) + P ∗((E ∩A) ∩BC) + P ∗((E ∩AC) ∩B)

]
+ P ∗((E ∩AC) ∩BC)

≥ P ∗(E ∩ (A ∪B)
)
+ P ∗(E ∩ (A ∪B)C

)
,

thus A ∪B ∈ M. This shows that M is an algebra, so it remains only to establish closure under countable

unions, which we may assume to be disjoint.

Given any disjoint sequence {Ai}∞i=1 in M, de�ne B =
⊔∞

i=1 Ai and Bn =
⊔n

i=1 Ai for n ∈ N. Then

P ∗(E ∩Bn) = P ∗(E ∩Bn ∩An) + P ∗(E ∩Bn ∩AC
n ) = P ∗(E ∩An) + P ∗(E ∩Bn−1).

As P ∗(E ∩B1) = P ∗(E ∩A1) and P ∗(E ∩Bn) =
∑n

i=1 P
∗(E ∩Ai) implies

P ∗(E ∩Bn+1) = P ∗(E ∩An+1) + P ∗(E ∩Bn) =

n+1∑
i=1

P ∗(E ∩Ai),

it follows from the principle of induction that P ∗(E ∩Bn) =
∑n

i=1 P
∗(E ∩Ai) for all n.

Since Bn ∈ M and Bn ⊆ B, we have

P ∗(E) = P ∗(E ∩Bn) + P ∗(E ∩BC
n ) ≥

n∑
i=1

P ∗(E ∩Ai) + P ∗(E ∩BC),

so letting n → ∞ yields

P ∗(E) ≥
∞∑
i=1

P ∗(E ∩Ai) + P ∗(E ∩BC) ≥ P ∗

( ∞⋃
i=1

(E ∩Ai)

)
+ P ∗(E ∩BC) = P ∗(E ∩B) + P ∗(E ∩BC).

This shows that B ∈ M,and taking E = B in the preceding gives

P ∗(B) =

∞∑
i=1

P ∗(B ∩Ai) + P ∗(B ∩BC) =

∞∑
i=1

P ∗(Ai),

so P ∗ is countably additive on M and thus de�nes a measure. □

Proposition 3.13. If P̃ is a premeasure on A and P ∗ is the induced outer measure from Proposition 3.11,

then P ∗(E) = P̃ (E) for all E ∈ A, and every set in A is P ∗-measurable.

Proof. If E ∈ A and E ⊆
⋃∞

i=1 Ai with each Ai ∈ A, we can de�ne Bn = E
⋂(

An \
⋃n−1

i=1 Ai

)
. Then the

Bn's are disjoint elements of A whose union is E, so, since Bn ⊆ An, P̃ (E) =
∑∞

n=1 P̃ (Bn) ≤
∑∞

n=1 P̃ (An).

This shows that P̃ (E) ≤ P ∗(E), and the reverse inequality is immediate.

To see that A ⊆ M, let A ∈ A, E ⊆ Ω, and ε > 0. Then there is a sequence {Bn}∞n=1 in A with E ⊆
⋃∞

n=1 Bn

and
∑∞

n=1 P̃ (Bn) ≤ P ∗(E) + ε.
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Since P̃ (Bn) = P̃ (Bn ∩A) + P̃ (Bn ∩AC) by �nite additivity of P̃ , we have

P ∗(E) + ε ≥
∞∑

n=1

P̃ (Bn) =

∞∑
n=1

P̃ (Bn ∩A) +

∞∑
n=1

P̃ (Bn ∩AC) ≥ P ∗(E ∩A) + P ∗(E ∩AC).

As ε was arbitrary, A is P ∗-measurable. □

It took some work, but we have �nally arrived at our goal! Though there were a lot of details to attend to,

the basic idea was pretty easy:

Start with a reasonable set function that behaves as you intend on a manageable collection of sets (protomea-

sure on a semialgebra); extend it in the obvious way to a slightly larger collection with an eye to countable

additivity (premeasure on the generated algebra); use this to de�ne an `approximate measure' on all of 2Ω

(the induced outer measure); and then restrict this to get a genuine measure on a σ-algebra containing all

the sets you started out with.

Theorem 3.14. If P0 is a protomeasure on a semialgebra S, then there is a unique measure P on σ(S)
such that P (S) = P0(S) for all S ∈ S.

Proof. Extend P0 to S as in Proposition 3.10 to get a premeasure P̃ on S that agrees with P0 on S. Then
extend this to the outer measure P ∗ de�ned in Proposition 3.11. The collection M of P ∗ measurable sets

is a σ-algebra containing S (and thus S and thus σ(S)) with P ∗(S) = P̃ (S) = P0(S) for all S ∈ S. As P ∗

de�nes a measure on M, P = P ∗|σ(S) is as asserted.

For uniqueness, suppose that Q is another measure on σ(S) with Q(S) = P0(S) for all S ∈ S. Since S is a

π-system and, arguing as in Example 2.7, L =
{
E : P (E) = Q(E)

}
is a λ-system containing S, Theorem

2.6 ensures that σ(S) ⊆ L�that is, P (E) = Q(E) for all E ∈ σ(S). □

Observe that the Carathéodory construction actually gave us a measure P on M that extends P0. In general,

M will be larger than σ(S).
To see this, we �rst note that if A ∈ M has the property that P ∗(A) = 0, then for any E ⊆ Ω we have

P ∗(E) ≤ P ∗(E ∩A) + P ∗(E ∩AC) ≤ P ∗(A) + P ∗(E) = P ∗(E),

so M contains all sets with outer measure 0.

Since P ∗ is monotone, this shows that if B ∈ M is a null set (so P (B) = 0) and A ⊆ B, then A ∈ M.

De�nition. A measure P whose domain contains all subsets of null sets is said to be complete.

Theorem 3.15. Suppose (Ω,F , P ) is a probability space and de�ne N =
{
N ∈ F : P (N) = 0

}
, F ={

E ∪ F : E ∈ F and F ⊆ N for some N ∈ N
}
. Then F is a σ-algebra and there is a unique extension P

of P that de�nes a complete measure on F .

Proof. Since F and N are closed under countable unions, so is F . Now suppose that E ∪ F ∈ F , with

F ⊆ N ∈ N . We can assume that E ∩N = ∅�otherwise, replace F and N with F \ E and N \ E.
Then E ∪ F = (E ∪ N) ∩ (F ∪ NC) since x ∈ E ∪ F implies x ∈ F ⊆ (E ∪ N), (F ∪ NC) or x ∈ E ⊆
(E ∪N), (F ∪NC), and every x ∈ (E ∪N) ∩ (F ∪NC) is either in N and thus in F or in NC and thus in

E. This means that (E ∪ F )C = (E ∪ N)C ∪ (F ∪ NC)C = (E ∪ N)C ∪ (N \ F ) with (E ∪ N)C ∈ F and

N \ F ⊆ N ∈ N . Thus F is closed under complements as well.
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Now given E ∈ F , F ⊆ N ∈ N , de�ne P (E ∪ F ) = P (E). This is well-de�ned because if E1 ∪ F1 = E2 ∪ F2

with Ei ∈ F and Fi ⊆ Ni ∈ N , then E1 ⊆ E2 ∪N2 and E2 ⊆ E1 ∪N1, so P (E1) ≤ P (E2) +P (N2) = P (E2)

and P (E2) ≤ P (E1) + P (N1) = P (E1). P is complete because every F ⊆ N ∈ N can be written as

F = ∅ ∪ F ∈ F (and we have P (F ) = P (∅) = 0).

If Q is any other measure on F that agrees with P on F , then for each E ∪ F ∈ F with F ⊆ N ∈ N ,

Q(E ∪ F ) ≤ Q(E) +Q(F ) = P (E) +Q(F ) ≤ P (E) +Q(N) = P (E) = P (E ∪ F )

and

P (E ∪ F ) = P (E) = Q(E) ≤ Q(E) +Q(F \ E) = Q(E ∪ F ). □

In light of the preceding, we can upgrade our extension theorem so that it gives a complete measure on σ(S).
This is often convenient, and we will feel free to do so when it is.

For example, the (in�nite) measure m on the Borel σ-�eld generated from the protomeasure µ0

(
(a, b]

)
= b−a

on the semialgebra H is called the Lebesgue measure on B. Its completion gives the Lebesgue σ-algebra

L := B.
As the Cantor set K is null with respect to Lebesgue measure, every one of its subsets belongs to L. Since
K is uncountable, this produces more Lebesgue sets than the cardinality of the continuum.

However, one can show that |B| = |R|, so L is indeed much bigger.

(Basically, one starts with a nice generating set like B0 =
{
(a, b) : a, b ∈ Q

}
, then takes all complements

and countable unions/intersections to get the larger set B1. Then one takes complements and countable

unions/intersections of these sets to get B2, and so forth. However, one must perform this recursion over all

countable ordinals to eventually arrive at B, so the argument involves trans�nite induction.)

For the purposes of this class, we can get all the measures on Borel/Lebesgue sets that we need by looking

at protomeasures arising from distribution functions on the semialgebra of h-intervals.

One nice thing about these measures is that they are inner and outer regular in the sense that for all E ∈ L,

P (E) = sup {P (K) : K ⊆ E and K is compact}

= inf {P (U) : E ⊆ U and U is open} .

The proof is not too di�cult, but in the interest of time, we leave it to independent pursuit.

Example 3.16. If E ⊆ R is countable and p : R → [0, 1] satis�es
∑

ω∈E p(ω) = 1 and p(ω) = 0 for ω ∈ EC ,

one can check that F (x) =
∑

ω≤xp(ω) is a probability distribution function and thus de�nes a protomeasure

on H which extends to the measure P on B de�ned by P (A) =
∑

ω∈A p(ω). (These sums are well-de�ned

since p vanishes outside of a countable set.) This takes care of all of the discrete distributions on R.

Example 3.17. If f : R → [0,∞) is integrable with
∫∞
−∞ f(x) dx = 1, then F (x) =

∫ x

−∞ f(t) dt is easily

seen to be a probability distribution function and thus de�nes a protomeasure µ0 on H which extends to a

measure µ on B = σ(H) with the property that µ
(
(a, b]

)
=
∫ b

a
f(x) dx for all −∞ ≤ a ≤ b ≤ ∞. These are

precisely the absolutely continuous distributions on R that you studied in undergraduate probability.
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Example 3.18. De�ne F : R → [0,∞) by F (x) = 0 for x ≤ 0, F (x) = 1 for x ≥ 1, F (x) = 1
2 for 1

3 ≤ x ≤ 2
3 ,

F (x) = 1
4 for 1

9 ≤ x ≤ 2
9 , F (x) = 3

4 for 7
9 ≤ x ≤ 8

9 , and, in general, for x in a closed middle third from the

Cantor construction, let F (x) be the average value of F at the endpoints of the interval from which it was

removed as de�ned in the previous step.

(More concretely but less intuitively, suppose x ∈ [0, 1] has ternary expansion x =
∑∞

n=1
an

3n . De�ne N =

inf{n : an = 1} ∈ N ∪ {∞} and set bn = an

2 for n < N , bN = 1 if N < ∞. Then F (x) =
∑N

n=1
bn
2n .)

This is called the devil's staircase and it is not too hard to show that it is a distribution function. However,

for every x in the complement of the Cantor set, F is di�erentiable with F ′(x) = 0, so it does not arise as

the integral of any f : R → [0,∞).

In a sense, these are all of the cases that can arise.

De�nition. A measure µ on (R,B) is said to be discrete if there is a countable set E ⊆ R with µ(EC) = 0.

µ is continuous if µ{x} = 0 for all x ∈ R.

Proposition 3.19. Any �nite Borel measure can be uniquely decomposed as µ = µd+µc where µd is discrete

and µc is continuous.

Proof. Let A =
{
x ∈ R : µ{x} > 0

}
. For any countable B ⊆ A,

∑
x∈B µ{x} = µ(B) < ∞ by countable

additivity and �niteness.

Therefore, Ak =
{
x ∈ R : µ{x} > k−1

}
is �nite for all k ∈ N, hence A =

⋃∞
k=1 Ak is a countable union of

�nite sets and thus countable.

The result follows by de�ning µd(E) = µ(E ∩A), µc(E) = µ(E ∩AC). □

De�nition. If µ and ν are measures on (S,G), then we say that ν is absolutely continuous with respect to

µ (and write ν ≪ µ) if ν(A) = 0 for all A ∈ G with µ(A) = 0.

We say that µ and ν are mutually singular (and write µ⊥ν) if there exist E,F ∈ G such that E ∩ F = ∅,
E ∪ F = S, and µ(F ) = 0 = ν(E).

The Lebesgue-Radon-Nikodym theorem shows that if µ and ν are σ-�nite measures, then ν = ρ + λ with

ρ ≪ µ, λ⊥µ.

(Moreover, there is a function f : Ω → [0,∞) such that ρ(A) =
∫
A
f dµ for all A ∈ F . If µ is Lebesgue

measure on R, then for all practical purposes, this is just the usual Riemann integral
∫
A
f(x) dx.)

Thus we can �rst decompose any Borel probability measure as P = µd+µc with µd discrete and µc continuous.

Then we write µc = µac + µsc with µac absolutely continuous with respect to Lebesgue measure and µsc

singular with respect to Lebesgue measure.

It follows that every Borel probability measure can be written as a convex combination of discrete, absolutely

continuous, and singular continuous probability measures.
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4 Random Variables

Having carefully constructed a rich set of probability spaces in the previous section, we will typically just

take it as given going forward that there is an underlying space (Ω,F , P ) on which we are working.

Our next task is to enrich this basic framework by introducing a few more fundamental constructs.

De�nition. A (real-valued) random variable on a probability space (Ω,F , P ) is a function X : Ω → R such

that for all E ∈ B, X−1(E) ∈ F .

Example 4.1. For any c ∈ R, the constant function X ≡ c is a random variable since for each A ∈ B,
X−1(A) = Ω if c ∈ A and X−1(A) = ∅ if c /∈ A, both of which belong to F .

Likewise, if E ∈ F , then X = 1E is a random variable since for every A ∈ B, X−1(A) ∈ {∅, A,AC ,Ω}
depending on whether A contains 0, 1, neither, or both.

In general, if (S,G) is a measurable space (so G is a σ-�eld over S), a map X : Ω → S is measurable if

X−1(G) ∈ F for all G ∈ G, and we say that X is an (S,G)-valued random variable. If the target σ-�eld is

understood, we often employ the slight abuse of notation X ∈ F to indicate that X is F -G measurable.

Theorem 4.2. If A generates G (in the sense that G is the smallest σ-algebra containing A) and

X−1(A) ∈ F for all A ∈ A, then X is an (S,G)-valued random variable.

Proof. Because X−1 (
⋃

i Ei) =
⋃

i X
−1(Ei) and X−1

(
EC
)
= X−1(E)C , E =

{
E ⊆ S : X−1(E) ∈ F

}
is a

σ-algebra. Thus, since A ⊆ E and A generates G, G ⊆ E , hence X is measurable. □

The fact that inverses commute with set operations also shows that for any map X : Ω → S, if G is a

σ-algebra on S, then σ(X) = {X−1(E) : E ∈ G} is a σ-algebra on Ω (called the σ-algebra generated by X).

By construction, it's the smallest σ-algebra on Ω that makes X an (S,G)-valued random variable.

We will mostly be concerned with the case (S,G) = (R,B), but abstract de�nitions can be easier to work

with since they tend to push extraneous details into the background.

Also, even if the focus is primarily on R-valued random variables, it is often convenient to consider random

vectors when stating and proving theorems. This corresponds to the case (S,G) = (Rd,Bd), where the Borel

σ-�eld on Rd is generated, for example, by R =
{
(a1, b1] × · · · × (ad, bd] : −∞ < ai < bi < ∞

}
; see the

appendix for a careful proof.

Proposition 4.3. If f : Rn → Rm is continuous, then f is Bn-Bm measurable.

Proof. Continuity means that f−1(U) is open in Rn for every open set U ∈ Rm. Since every open subset of

Rn is contained in Bn and the open subsets of Rm generate Bm, the assertion follows from Theorem 4.2.

(The same proof works for continuous maps between arbitrary topological spaces equipped with their Borel

σ-�elds.) □

Proposition 4.4. If (S1,G1), (S2,G2), (S3,G3) are measurable spaces and f : S1 → S2, g : S2 → S3 are

measurable maps, then g ◦ f : S1 → S3 is measurable.

Proof. Given any G ∈ G3, measurability of g ensures that g−1(G) ∈ G2, so measurability of f implies

(g ◦ f)−1(G) = f−1
(
g−1(G)

)
∈ G1. □
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Corollary 4.5. If f : R → R is continuous and X is a random variable, then Y = f(X) is a random

variable as well.

Theorem 4.6. If X1, . . . , Xn are R-valued random variables, then so are Sn =
∑n

k=1 Xk and Vn =
∏n

k=1 Xk.

Proof. We �rst observe that the map X : Ω → Rd given by X(ω) =
(
X1(ω), . . . , Xn(ω)

)
is measurable.

Indeed, Bd is generated by rectangles of the form (a1, b1]× · · · × (ad, bd] and

X−1
(
(a1, b1]× · · · × (ad, bd]

)
=
{
ω ∈ Ω :

(
X1(ω), . . . , Xn(ω)

)
∈ (a1, b1]× · · · × (ad, bd]

}
=

n⋂
k=1

X−1
k

(
(ak, bk]

)
,

which is a �nite intersection of sets in F (since each Xk is measurable) and thus belongs to F .

Next, we note that the maps f : Rn → R and g : Rn → R de�ned by f
(
(x1, . . . , xn)

)
= x1 + · · · + xn and

g
(
(x1, . . . , xn)

)
= x1 · · ·xn are continuous and thus measurable by Proposition 4.3.

(The projection functions πk(x) = xk are continuous for each k, so f can be expressed as a sum of continuous

functions and g as a product.)

Therefore, Sn = f(X) and Vn = g(X) are compositions of measurable functions, and the claim follows from

Proposition 4.4. □

Remark 4.7. Note that if X is measurable with respect to F and F̃ is any σ-�eld containing F , then X is

automatically measurable with respect to F̃ . In particular, we can always consider the completion of the

source σ-�eld.

However, enlarging the target σ-�eld provides more opportunities for maps to fail to be measurable. For

example, one can construct continuous functions from R to R that are not L-L measurable. Similarly, if

f : (R, E) → (S,F1) and g : (S,F2) → (T,G) are measurable, g ◦ f : (R, E) → (T,G) need not be unless

F2 ⊆ F1. This is why we use the Borel rather than Lebesgue σ-algebra in our de�nition of R-valued random

variables.

It is sometimes convenient to allow random variables to assume the values ±∞, and we observe that almost

all of our results generalize easily to (R∗,B∗) where R∗ = R∪ {±∞} and B∗ =
{
E ⊆ R : E ∩R ∈ B

}
, which

is generated, for example, by rays of the form [−∞, a) with a ∈ R.

Theorem 4.8. If X1, X2, ... are random variables, then so are

inf
n∈N

Xn, sup
n∈N

Xn, lim inf
n→∞

Xn, lim sup
n→∞

Xn.

Proof. For any a ∈ R, the in�mum of a sequence is strictly less than a if and only if some term is strictly

less than a, hence {
inf
n∈N

Xn < a
}
=
⋃
n∈N

{
Xn < a

}
∈ F .

Since
{
[−∞, a) : a ∈ R

}
generates B∗, we conclude that infn∈N Xn is measurable.

To see that supn∈N Xn is a random variable, note that supn∈N Xn = − infn∈N −Xn and x 7→ −x is measurable.

Arguing as in the �rst case, infm≥n Xm is measurable for all m ∈ N, so it follows from the second case that

lim inf
n→∞

Xn = sup
n∈N

(
inf
m≥n

Xm

)
is a random variable. The lim sup case is similar. □
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It follows from Theorem 4.8 that{
lim
n→∞

Xn exists
}
=
{
lim inf
n→∞

Xn = lim sup
n→∞

Xn

}
=
{
lim inf
n→∞

Xn − lim sup
n→∞

Xn = 0
}

is measurable since it is the preimage of {0} ∈ B under the map (lim infn→∞ Xn)− (lim supn→∞ Xn), which

is the di�erence of measurable functions and thus measurable.

When P {limn→∞ Xn exists} = 1, we say that the sequence {Xn} converges almost surely toX := lim sup
n→∞

Xn,

and write Xn → X a.s.

Distributions

Every random variable induces a probability measure µ on R (called its distribution) by

µ(A) = P
(
X−1(A)

)
for all A ∈ B.
To check that µ is a probability measure, note that since X is a function, if A1, A2, ... ∈ B are disjoint, then

so are {X ∈ A1}, {X ∈ A2}, ... ∈ F , hence

µ (
⋃

iAi) = P ({X ∈
⋃

iAi}) = P (
⋃

i{X ∈ Ai}) =
∑
i

P{X ∈ Ai} =
∑
i

µ(Ai).

The distribution of a random variable X is usually described in terms of its distribution function

F (x) = P (X ≤ x) = µ
(
(−∞, x]

)
.

In cases where confusion may arise, we will emphasize dependence on the random variable using subscripts�

i.e. µX , FX .

Theorem 4.9. If F is the distribution function of a random variable X, then

(i) F is nondecreasing

(ii) F is right-continuous (so limx→a+ F (x) = F (a) for all a ∈ R)

(iii) limx→−∞ F(x) = 0 and limx→∞ F (x) = 1

(iv) If F(x−) = limy→x− F (y), then F (x−) = P (X < x)

(v) P (X = x) = F (x)− F (x−)

Proof.

For (i), if x ≤ y, then {X ≤ x} ⊆ {X ≤ y}, so F (x) = P (X ≤ x) ≤ P (X ≤ y) = F (y) by monotonicity.

For (ii), observe that if x ↘ a, then {X ≤ x} ↘ {X ≤ a}, and apply continuity from above.

For (iii), we have {X ≤ x} ↘ ∅ as x ↘ −∞ and {X ≤ x} ↗ R as x ↗ ∞.

For (iv), {X ≤ y} ↗ {X < x} as y ↗ x. (Note that the limit exists since F is monotone.)

For (v), {X = x} = {X ≤ x} \ {X < x}. □
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It is perhaps worth observing that if D is the set of discontinuity points of a distribution function F , then

monotonicity and right-continuity ensure that
{(

F (d−), F (d)
)
: d ∈ D

}
is a collection of disjoint open

intervals. As each must contain a rational number, D is necessarily countable.

Theorem 4.10. If F : R → R satis�es properties (i), (ii), and (iii) from Theorem 4.9, then it is the

distribution function of some random variable.

Proof. Let Ω = (0, 1), F = B(0,1), P = Lebesgue measure, and de�ne X : (0, 1) → R by

X(ω) = F−1(ω) := inf
{
y ∈ R : F (y) ≥ ω

}
.

Note that properties (i) and (iii) ensure that X is well-de�ned.

To see that F is indeed the distribution function of X, it su�ces to show that{
ω : X(ω) ≤ x

}
=
{
ω : ω ≤ F (x)

}
for all x ∈ R, as this implies

P (X ≤ x) = P
{
ω : X(ω) ≤ x

}
= P

{
ω : ω ≤ F (x)

}
= F (x)

where the �nal equality uses the de�nition of Lebesgue measure and the fact that F (x) ∈ [0, 1].

Now if ω ≤ F (x), then x ∈
{
y ∈ R : F (y) ≥ ω

}
, so X(ω) = inf

{
y ∈ R : F (y) ≥ ω

}
≤ x.

This shows that
{
ω : ω ≤ F (x)

}
⊆
{
ω : X(ω) ≤ x

}
.

To establish the reverse inclusion, observe that if ω > F (x), then properties (i) and (ii) imply that there is

an ε > 0 such that F (x) ≤ F (x+ ε) < ω.

Since F is nondecreasing, x+ ε is a lower bound for
{
y ∈ R : F (y) ≥ ω

}
, hence X(ω) ≥ x+ ε > x.

Therefore,
{
ω : ω ≤ F (x)

}C ⊆
{
ω : X(ω) ≤ x

}C
and thus

{
ω : X(ω) ≤ x

}
⊆
{
ω : ω ≤ F (x)

}
. □

Theorem 4.10 shows that any function satisfying properties (i) - (iii) gives rise to a random variable X, and

thus to a probability measure µ, the distribution of X.

Example 2.7 shows that this measure is uniquely determined�that is, if two random variables have the same

distribution function, then they have the same distribution.

To summarize, every random variable induces a probability measure on (R,B), every probability measure

de�nes a function satisfying properties (i)-(iii) in Theorem 4.9, and every such function uniquely determines

a probability measure.

Consequently, it is equivalent to give the distribution or the distribution function of a random variable.

However, one should be aware that distributions/distribution functions do not determine random variables,

even neglecting di�erences on null sets.

De�nition. If X and Y are de�ned on a common probability space and P (X = Y ) = 1, we say that X = Y

almost surely (or a.s. for short).

De�nition. When two random variables X and Y have the same distribution function, we say that they

are equal in distribution and write X =d Y .
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If X = Y a.s., then X =d Y since for any E ∈ B,

µX(E) = P (X ∈ E,X = Y ) + P (X ∈ E,X ̸= Y ) = P (X ∈ E,X = Y )

= P (Y ∈ E,X = Y ) = P (Y ∈ E,X = Y ) + P (Y ∈ E,X ̸= Y ) = µY (E)

where the commas denote intersections of events.

The converse is not true though. For example, if X is uniform on [−1, 1]�so µX = 1
2m|[−1,1]�then −X also

has distribution µX , but −X ̸= X a.s.

Moreover, random variables can be equal in distribution even if they are de�ned on di�erent probability

spaces.
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5 Independence

Another fundamental concept in probability theory is independence. Heuristically, two objects are indepen-

dent if information concerning one of them does not contribute to one's knowledge about the other.

In order to motivate a general and rigorous formulation of this notion, it's helpful to �rst recall the classical

notion of conditional probability.

(A more sophisticated version involves conditioning on sub-σ-�elds and replacing probabilities with random

variables, but we'll have to wait a while to be able to develop that approach.)

Suppose that we have a reasonable model of some experiment, encoded by the probability space (Ω,F , P ),

and then somehow became convinced that the experiment will result in an outcome belonging to F ∈ F .

For reasons that will soon become clear, let us suppose moreover that P (F ) > 0. How should we go about

updating our model to account for this additional information?

One way to proceed would be to collapse our sample space to F , restrict our σ-�eld to
{
E ∩ F : E ∈ F

}
,

and normalize our probability measure so that F is assigned probability 1. E�ectively, this will result in

the same de�nition we are about to derive, but in fact, it is su�cient (and desirable from the perspective of

extending probability spaces, etc.) to retain (Ω,F) and only modify P .

Let's denote the updated probability measure by PF . Other than satisfying the de�nition of a probability

on (Ω,F), it is natural to require that

(1) PF (F ) = 1 (since we know that F occurs)

(2) For any events A,B ∈ F with A,B ⊆ F and P (B) > 0, PF (A)/PF (B) = P (A)/P (B) (since we have

learned nothing about the relative probabilities of A and B)

Since 1 = PF (Ω) = PF (F ) + PF (F
C) = 1 + PF (F

C), we must have that PF (F
C) = 0 and thus PF (G) = 0

for any G ⊆ FC by monotonicity.

It follows that for any E ∈ F ,

PF (E) = PF (E ∩ F ) + PF (E ∩ FC) = PF (E ∩ F ) =
PF (E ∩ F )

PF (F )
=

P (E ∩ F )

P (F )
.

It is a simple exercise to check that this de�nition of PF does indeed give a valid probability on (Ω,F).

Now if knowledge of the occurrence of F was completely uninformative about the probability we should

assign to E, then we would have P (E) = PF (E) = P (E∩F )
P (F ) , hence P (E ∩ F ) = P (E)P (F ).

It turns out that this product formulation of independence is the right choice since it is simple to work with,

generalizes nicely, and sidesteps the problem of potential division by 0.

Formally, let us say that

• Two events A and B are independent if P (A ∩B) = P (A)P (B).

• Two random variables X and Y are independent if P (X ∈ E, Y ∈ F ) = P (X ∈ E)P (Y ∈ F ) for all

E,F ∈ B. (That is, if the events {X ∈ E} and {Y ∈ F} are independent.)

• Two sub-σ-�elds F1 and F2 are independent if for all A ∈ F1, B ∈ F2, the events A and B are

independent.
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Observe that if A ∈ F has P (A) = 0 or P (A) = 1, then A is independent of every B ∈ F .

This also implies that if X is a.s. constant, then X is independent of every Y ∈ F and that {∅,Ω} is

independent of every sub-σ-�eld.

This is all well and good so far, but we immediately run into problems if we try to naively extend these

multiplication rules to more than two events/random variables/sub-σ-�elds.

For instance, if A,B,C are events with P (A∩B) ̸= P (A)P (B) and P (C) = 0, then we have P (A∩B∩C) =

0 = P (A)P (B)P (C), but it wouldn't make sense to say that {A,B,C} is an independent collection of events

since A and B are dependent.

On the other hand, just because any pair of events in a collection is independent, it does not follow that the

entire collection should be regarded as such. As an example, consider the experiment where two fair coins are

�ipped and set A = {1st coin heads}, B = {2nd coin heads}, C = {both coins same}. It's straightforward

to check that P (A ∩ B) = P (A ∩ C) = P (B ∩ C) = 1
4 = P (A)P (B) = P (A)P (C) = P (B)P (C), but

P (A ∩B ∩ C) = 1
4 ̸= 1

8 = P (A)P (B)P (C).

As such, we say that an in�nite collection of objects is independent if every �nite subcollection is, where

• Events A1, ..., An ∈ F are independent if for any I ⊆ [n], we have

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai).

• Random variables X1, ..., Xn ∈ F are independent if for any choice of Ei ∈ Bi, i = 1, ..., n, we have

P (X1 ∈ E1, ..., Xn ∈ En) =

n∏
i=1

P (Xi ∈ Ei).

• Sub-σ-�elds F1, ...,Fn are independent if for any choice of Ai ∈ Fi, i = 1, ..., n, we have

P

( n⋂
i=1

Ai

)
=

n∏
i=1

P (Ai).

Note that σ-algebras and random variables are implicitly subject to the same subcollection constraint as

events since special cases of the de�nition include taking Ai = Ω, Ei = R for i ∈ IC .

One can show that independence of events is a special case of independence of random variables (via indica-

tors), which in turn is a special case of independence of sub-σ-�elds (via the generated σ-�elds).

We will take as our running de�nition of independence, the further generalization:

De�nition. Given a probability space (Ω,F , P ), collections of events C1, ..., Cn ⊆ F are independent if for

all I ⊆ [n],

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai)

whenever Ai ∈ Ci for each i ∈ I.

An in�nite collection of subsets of F is independent if every �nite subcollection is.

Note that if C1, ..., Cn are independent and we set Ci = Ci ∪ {Ω}, then C1, ..., Cn are independent as well. In

this case, the independence criterion reduces to P
(⋂n

i=1 Ai

)
=
∏n

i=1 P (Ai) for any choice of Ai ∈ Ci.
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These de�nitions seem to require us to check an impractical number of cases to determine whether a given

collection of objects is independent. The following results are useful for simplifying this task.

Theorem 5.1. Suppose that C1, ..., Cn are independent collections of events. If each Ci is a π-system, then

the sub-σ-algebras σ(C1), ..., σ(Cn) are independent.

Proof. Because Ω is independent of every event and σ(Ci) = σ(Ci), we can assume without loss of generality

that Ω ∈ Ci for all i so that we need only consider intersections/products over [n].

Let A2, ..., An be events with Ai ∈ Ci, set F =
⋂n

i=2 Ai, and set L = {A ∈ F : P (A ∩ F ) = P (A)P (F )}.
Since P (Ω ∩ F ) = P (F ) = P (Ω)P (F ), we have that Ω ∈ L.
Now suppose that A,B ∈ L with A ⊆ B. Then

P ((B \A) ∩ F ) = P ((B ∩ F ) \ (A ∩ F )) = P (B ∩ F )− P (A ∩ F )

= P (B)P (F )− P (A)P (F ) = (P (B)− P (A))P (F ) = P (B \A)P (F ),

hence (B \A) ∈ L.
Finally, let B1, B2, ... ∈ L with Bn ↗ B. Then (Bn ∩ F ) ↗ (B ∩ F ), so

P (B ∩ F ) = lim
n→∞

P (Bn ∩ F ) = lim
n→∞

P (Bn)P (F ) = P (B)P (F ),

so B ∈ L as well.

Therefore, L is a λ-system, so, since C1 is a π-system contained in L by assumption, the π-λ Theorem shows

that σ(C1) ⊆ L.
Because A2, ..., An were arbitrary members of C2, ..., Cn, we conclude that σ(C1), C2, ..., Cn are independent.

Repeating this argument for C2, C3, ..., Cn, σ(C1) shows that σ(C2), C3, ..., Cn, σ(C1) are independent, and n−2

more iterations completes the proof. □

Corollary 5.2. Random variables X1, ..., Xn are independent if

P (X1 ≤ x1, ..., Xn ≤ xn) =

n∏
i=1

P (Xi ≤ xi) for all x1, ..., xn ∈ R.

Proof. Let Ci = {{Xi ≤ x} : x ∈ R} for i = 1, ..., n.

Since {Xi ≤ x} ∩ {Xi ≤ y} = {Xi ≤ x ∧ y}, the Ci's are π-systems, so σ(C1), ..., σ(Cn) are independent by

Theorem 5.1.

Because {(−∞, x] : x ∈ R} generates B, σ(Ci) = σ(Xi), and the result follows. □

Since the converse of Corollary 5.2 is true by de�nition, independence of random variables X1, ..., Xn is

equivalent to the condition that their joint cdf factors as a product of the marginals cdfs.

One can prove analogous results for density and mass functions using the same basic ideas.

If X1, ..., Xn are independent random variables and f1, ..., fn : R → R are measurable, then f(X1), ..., f(Xn)

are independent random variables since for any choice of Bi ∈ Bi,

P (f1(Xi) ∈ B1, ..., fn(Xn) ∈ Bn) = P
(
X1 ∈ f−1

1 (B1), ..., Xn ∈ f−1
n (Bn)

)
=

n∏
i=1

P
(
Xi ∈ f−1

i (Bi)
)
=

n∏
i=1

P (fi(Xi) ∈ Bi) .
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With the help of Theorem 5.1, we can prove the stronger result that functions of disjoint sets of independent

random variables are independent.

Lemma 5.3. Suppose Fi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ m(i), are independent sub-σ-algebras and let Gi =

σ
(⋃

j Fi,j

)
. Then G1, ...,Gn are independent.

Proof. Let Ci =
{⋂

j Ai,j : Ai,j ∈ Fi,j

}
.

If
⋂

j Ai,j ,
⋂

j Bi,j ∈ Ci, then
(⋂

j Ai,j

)
∩
(⋂

j Bi,j

)
=
⋂

j (Ai,j ∩Bi,j) ∈ Ci, so Ci is a π-system and Theorem

5.1 guarantees that σ(C1), ..., σ(Cn) are independent.
Because F ∈

⋃
j Fi,j implies F ∈ Fi,k for some k and thus F = Ω ∩ · · · ∩ Ω ∩ F ∩ Ω ∩ · · · ∩ Ω ∈ Ci, we have

that
⋃

j Fi,j ⊆ Ci, so Gi = σ
(⋃

j Fi,j

)
⊆ σ(Ci). Consequently, G1, ...,Gn are independent. □

Corollary 5.4. If Xi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ m(i), are independent random variables and the functions

fi : Rm(i) → R are measurable, then f1(X1,1, ..., X1,m(1)), ..., fn(Xn,1, ..., Xn,m(n)) are independent.

Proof. Let Fi,j = σ(Xi,j). Since fi(Xi,1, ..., Xi,m(i)) is measurable with respect to Gi = σ
(⋃

j Fi,j

)
, the

result follows from Lemma 5.3. □
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6 Expectation

Random variables often enable us to summarize or simplify probability experiments by attaching a single

real number to each outcome.

In many cases we can obtain a further useful reduction by distilling the random variable down to a �xed

number that represents our `best guess' for the value it takes. This notion of typicality or centrality is

formally encoded in terms of the random variable's expected value (or expectation).

If X is a discrete random variable (so its range is countable), we can encode its distribution via the probability

mass function pX(x) = P (X = x). In this case, the expectation is just the probability-weighted average of

the values it takes, E[X] =
∑

x∈R x pX(x).

Since all summands are nonnegative and only countably many are nonzero, this sum is well-de�ned. If we

further assume that Ω itself is countable, this is equivalent to E[X] =
∑

ω∈Ω X(ω)P{ω}.

In undergraduate probability, this is generalized to the case where X is absolutely continuous (so there is

a function fX : R → [0,∞), called the probability density function of X, such that FX(x) = P (X ≤ x) =∫ x

−∞ fX(t) dt) by declaring that E[X] =
∫∞
−∞ xfX(x) dx.

The intuition is that integrals are the continuous version of sums. To �esh out this line of reasoning, observe

that if fX is continuous, then P (x− ε
2 ≤ X ≤ x+ ε

2 ) =
∫ x+ε/2

x−ε/2
fX(t) dt ≈ εfX(x) for ε > 0 su�ciently small,

so the density function is playing a similar role to the mass function.

If we also have that X ∈ [a, b] a.s., then we can imitate the de�nition of expectation for discrete random

variables by taking a tagged partition a = x0 ≤ t1 ≤ x1 ≤ · · · ≤ xn−1 ≤ tn ≤ xn = b and forming the

sum
∑n

k=1 tkP (xk−1 ≤ X ≤ xk) ≈
∑n

k=1 tkfX(tk)(xk − xk−1), which will converge to
∫ b

a
xfX(x) dx as the

mesh of the partition tends to 0. If X is unbounded, taking a → −∞, b → ∞ gives E[X] =
∫∞
−∞ xfX(x) dx

whenever the improper integral converges.

For general X, we could play the same game by de�ning E[X] as the limit as max1≤k≤n(xk − xk−1) → 0 of

n∑
k=1

tkP (xk−1 ≤ X ≤ xk) =

n∑
k=1

tk[FX(xk)− FX(xk−1)].

This gives the expectation of X as the Riemann-Stieltjes integral of x with respect to FX . Of course, there

are a lot of details to attend to if we want to make it rigorous.

Rather than pursue this approach, we will consider a theory of expectation/integration that is better suited

to proving general theorems, taking limits, and accommodating a larger class of integrands. The key idea is

to partition the codomain rather than the domain when approximating the integral by a sum.

De�nition. If X is a real-valued random variable de�ned on a probability space (Ω,F , P ), we de�ne E[X] =∫
Ω
X(ω) dP (ω) (or just

∫
X dP for short), provided this integral exists in R∗.

To construct the above integral, we �rst consider the case where X is the indicator of some A ∈ F . Since

X(ω) = 1A(ω) equals 1 on A and 0 on AC , it's natural to de�ne
∫
X dP = P (A).

Next, we extend this to linear combinations of indicators in the obvious way. That is, if X =
∑n

k=1 xk1Ak
,

we would like to say that
∫
X dP =

∑n
k=1 xkP (Ak).

However, such representations are not necessarily unique (e.g. 21A = 3
41A + 5

41A and 1{a} + 21{b} =

1{a,b} + 1{b}), so we need to be careful.
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To this end, we say that X is simple if there is a �nite partition of the sample space Ω =
⊔n

k=1 Ak and real

numbers x1, . . . , xn such that X =
∑n

k=1 xk1Ak
.

Equivalently, X is simple if Range(X) =
{
X(ω) : ω ∈ Ω

}
is �nite because if Range(X) = {x1, . . . , xn}, we

have the canonical representation X =
∑n

k=1 xk1Ak
where Ak =

{
ω ∈ Ω : X(ω) = xk

}
.

Example 6.1. It's easy to check that for any disjoint events A,B ∈ F , 1A⊔B = 1A+1B , and for any events

A,B ∈ F , 1A∩B = 1A1B .

It follows that if X =
∑m

j=1 xj1Aj
and Y =

∑n
k=1 yk1Bk

are simple, then so are X + Y and XY .

Indeed, we can write Aj =
⊔n

k=1(Aj ∩Bk) and Bk =
⊔m

j=1(Aj ∩Bj), so that Ω =
⊔

(j,k)∈[m]×[n](Aj ∩Bk),

X + Y =

m∑
j=1

xj

n∑
k=1

1Aj∩Bk
+

n∑
k=1

yk

m∑
j=1

1Aj∩Bk
=

m∑
j=1

n∑
k=1

(xj + yk)1Aj∩Bk
,

and

XY =

 m∑
j=1

xj1Aj

( n∑
k=1

yk1Bk

)
=

m∑
j=1

n∑
k=1

xjyk1Aj
1Bj

=

m∑
j=1

n∑
k=1

xjyk1Aj∩Bk
.

(Of course this also follows from the �nite range characterization of simple functions.)

Now for a simple random variable X =
∑n

k=1 xk1Ak
, we de�ne

∫
X dP =

∑n
k=1 xkP (Ak).

Even with the requirement that the constituent events partition the sample space, there may still be many

ways to express a simple function. For instance, 1Ω = 1A + 1AC for any A ∈ F .

However, by appealing to the aforementioned canonical representation, we see that
∑m

j=1 aj1Aj
=
∑n

k=1 bk1Bk

implies
∑m

j=1 ajP (Aj) =
∑n

k=1 bkP (Bk). (Just union together any events having the same weights.)

Example 6.2. Let (Ω,F , P ) be Lebesgue measure on [0, 1] and consider the simple random variables

X(ω) =

2, ω ≤ 1/3

5, ω > 1/3
, Y (ω) =



2, ω ∈ Q

4, ω = 1/
√
2

6, ω /∈ Q, ω < 1
4

8, else

, Z ≡ c.

One readily checks that E[X] = 2 · 13+5· 23 = 4, E[Y ] = 2 ·0+4·0+6· 14+8· 34 = 15
2 , and E[Z] = E[c1[0,1]] = c.

Proposition 6.3. If X =
∑m

j=1 xj1Aj
and Y =

∑n
k=1 yk1Bk

are simple, then E[aX+ bY ] = aE[X]+ bE[Y ]

for any a, b ∈ R.

Proof. Arguing as in Example 6.1 shows that

E[aX + bY ] =

m∑
j=1

n∑
k=1

(axk + byk)P (Aj ∩Bk)

= a

m∑
j=1

xk

n∑
k=1

P (Aj ∩Bk) + b

n∑
k=1

yk

m∑
j=1

P (Aj ∩Bk)

= a

m∑
j=1

xkP (Aj) + b

n∑
k=1

ykP (Bk) = aE[X] + bE[Y ]. □
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An immediate corollary is that E[
∑n

k=1 xk1Ak
] =

∑n
k=1 xkP (Ak) for any collection of sets {Ak}nk=1, regard-

less of whether they partition the sample space, just as we had hoped for originally.

Linearity also shows that expectation/integration is monotone for simple random variables: If X(ω) ≤ Y (ω)

for all ω ∈ Ω, then Y −X is a nonnegative simple random variable, so E[Y ]− E[X] = E[Y −X] ≥ 0.

It follows that if X is a simple random variable, then E[X] = max
{
E[Y ] : Y is simple with Y ≤ X

}
.

This suggests a means of extending our de�nition of expectation to nonnegative random variables. Namely,

if X ≥ 0, we declare that

E[X] = sup
{
E[Y ] : Y is simple with Y ≤ X

}
.

This is well-de�ned, though possibly in�nite, and it does agree with our previous de�nitions in the event

that X is simple. Moreover, monotonicity is baked right into the de�nition.

The following result shows that we can approximate nonnegative random variable from below by simple

random variables, providing a more concrete way of understanding the supremum.

Theorem 6.4. If X is a nonnegative random variable, then there is a sequence {Xn}∞n=1 of simple functions

with 0 ≤ X1 ≤ X2 ≤ ... ≤ X such that Xn → X pointwise, and the convergence is uniform on any set on

which X is bounded.

Proof. For n = 1, 2, ... and k = 0, 1, ..., 4n − 1, de�ne

An,k = X−1

((
k

2n
,
k + 1

2n

])
and An = X−1 ((2n,∞] ) ,

and set

Xn =

4n−1∑
k=0

k

2n
1An,k

+ 2n1An
.

By construction, 0 ≤ X −Xn ≤ 2−n on AC
n =

{
ω : X(ω) ≤ 2n

}
↘ ∅, and the result follows. □

In order to leverage the preceding, we need to be able to pass limits through integrals. For this, we appeal

to the following monotone convergence theorem.

Theorem 6.5. If X1 ≤ X2 ≤ · · · are nonnegative random variables converging pointwise to X, then

lim
n→∞

E[Xn] = E[X].

Proof. X is a random variable by Theorem 4.8, and monotonicity ensures E[X1] ≤ E[X2] ≤ · · · ≤ E[X],

hence limn→∞ E[Xn] exists in R∗ and is bounded above by E[X].

As such, we need only show that limn→∞ E[Xn] ≥ E[X]. According to our de�nition of expectation of

nonnegative random variables, this will follow upon demonstrating that limn→∞ E[Xn] ≥ E[Y ] for any

simple Y ≤ X.

Let Y =
∑m

k=1 yk1Ak
be bounded above by X, choose ε > 0, and set Ak,n =

{
ω ∈ Ak : Xn(ω) ≥ yk − ε

}
.

Then E[Xn] ≥
∑m

k=1(yk − ε)P (Ak,n), and since Ak,n ↗ Ak as n → ∞, continuity from below gives

lim
n→∞

E[Xn] ≥ lim
n→∞

m∑
k=1

(yk − ε)P (Ak,n) =

m∑
k=1

(yk − ε)P (Ak) = E[Y ]− ε

completing the proof. □
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By construction, expectation is unchanged if we modify a random variable on an event having probability

0, so one can weaken the assumption to Xn ↗ X a.s. in the monotone convergence theorem.

Also, once we extend our de�nition to general random variables, we can weaken the nonnegativity condition

to E[X1] > −∞ by applying Theorem 6.5 0 ≤ Xn −X1 ↗ X −X1. (If E[X1] = ∞, then E[X] = ∞.)

Similarly, replacing Xn, X with −Xn,−X, we see that if E[X1] < ∞ and Xn ↘ X a.s., then E[Xn] → E[X].

However, monotonicity of some sort is important. For instance, if (Ω,F , P ) is Lebesgue measure on [0, 1],

then Xn(ω) = n1(0, 1
n )(ω) → 0 for all ω, but E[Xn] = 1 for all n.

As an example of the MCT in action, we derive the following `layer cake representation' for the expectation

of N0-valued random variables.

Proposition 6.6. If Range(X) ⊆ N0, then E[X] =
∑∞

k=1 P (X ≥ k).

Proof. The simple random variables Xn =
∑n

k=0 k1{X=k} increase to X, so

E[X] = lim
n→∞

E[Xn] = lim
n→∞

n∑
k=0

kP (X = k) =

∞∑
k=1

kP (X = k),

hence
∞∑
k=1

P (X ≥ k) =

∞∑
k=1

∞∑
j=0

P (X = k + j) =

∞∑
ℓ=1

ℓP (X = ℓ) = E[X]. □

To complete our construction of the integral/expectation, suppose that X is any random variable and de�ne

X+ = max{X, 0}, X− = max{−X, 0}. (Equivalently, if E = X−1
(
[0,∞)

)
, X+ = X1E and X− = −X1EC .)

Then X+ and X− are nonnegative random variables and thus have well-de�ned expectations. If at least one

of them is �nite, then we de�ne E[X] = E[X+]− E[X−].

If E[X+] and E[X−] are �nite, so are E[X] and E |X| = E[X+] + E[X−], and we say that X is integrable.

If E[X+] = ∞ and E[X−] < ∞, then E[X] = ∞; and if E[X+] < ∞ and E[X−] = ∞, then E[X] = −∞.

This is all well and good in terms of de�ning the expected value, but we will see that integrability is often a

desirable feature.

And that's how you build the integral! Start with indicators, extend linearly to simple functions, then to

nonnegative functions by monotone convergence, and �nally to arbitrary functions by considering positive

and negative parts.

Many useful properties of expectation can be established by following this four-step procedure (or fewer

depending on where you start).

Proposition 6.7. If X ≤ Y and E[X], E[Y ] exist in R∗, then E[X] ≤ E[Y ].

Proof. If 0 ≤ X ≤ Y , then

E[X] = sup
{
E[Z] : Z ≤ X is simple

}
≤ sup

{
E[Z] : Z ≤ Y is simple

}
= E[Y ].

For general X ≤ Y , we must have X+ ≤ Y + and X− ≥ Y −, so

E[X] = E[X+]− E[X−] ≤ E[Y +]− E[Y −] = E[Y ]

by our result for nonnegative random variables. □
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Similarly, we know that expectation is linear for simple random variables.

If X is nonnegative and c ≥ 0, then for any sequence of simple Xn ↗ X, we have that cXn ↗ cX, so

E[cX] = limn→∞ E[cXn] = limn→∞ cE[Xn] = cE[X].

Thus if E[X] exists and c ≥ 0, then

E[cX] = E[(cX)+]− E[(cX)− = cE[X+]− cE[X−] = cE[X].

For c < 0, we have that (cX)± = |c|X∓, so

E[cX] = E
[
|c|X−]− E

[
|c|X+

]
= |c|

(
E
[
X−]− E

[
X+
])

= c
(
E
[
X+
]
− E

[
X−]) = cE[X]

in this case as well.

If X and Y are nonnegative random variables, Theorem 6.4 ensures the existence of sequences of simple

Xn ↗ X and Yn ↗ Y , so Theorems 6.5 and 6.3 tell us that

E[X + Y ] = lim
n→∞

E[Xn + Yn] = lim
n→∞

E[Xn] + lim
n→∞

E[Yn] = E[X] + E[Y ].

Finally, if Z = X + Y for integrable X,Y , then Z+ − Z− = Z = (X+ − X−) + (Y + − Y −), hence

Z+ + X− + Y − = Z− + X+ + Y +. Applying our result for nonnegative random variables shows that

E[Z+] + E[X−] + E[Y −] = E[Z−] + E[X+] + E[Y +], hence

E[Z] = E[Z+]− E[Z−] = E[X+]− E[X−] + E[Y +]− E[Y −] = E[X] + E[Y ].

(Integrability of X and Y guarantees that X±, Y ±, and Z± all have �nite expectations.)

There are additional cases where certain combinations of E[X+], E[X−], E[Y +], E[Y −] are in�nite and anal-

ogous results hold, but we'll content ourselves with the following consequence of the above computations.

Proposition 6.8. For any integrable X,Y and any a, b ∈ R, E[aX + bY ] = aE[X] + bE[Y ].

At this point, we recall that random variablesX,Y are independent if {X ∈ A} and {Y ∈ B} are independent
events for all A,B ∈ B.

Proposition 6.9. If X and Y are independent and nonnegative/integrable, then E[XY ] = E[X]E[Y ].

Proof. If X,Y ≥ 0, let Xn =
∑4n

j=1 xn,j1An,j and Yn =
∑4n

k=1 yn,k1Bn,k
be as in Theorem 6.4�so xn,j =

j
2n ,

An,j = X−1
((

j
2n ,

j+1
2n

])
for j < 4n, xn,4n = 2n, and An,4n = X−1 ((2n,∞] ); similarly for Yn.

Then {An,j} and {Bn,k} are independent and XnYn =
∑4n

j=1

∑4n

k=1 xn,jyn,k1An,j∩Bn,k
increases to XY , so

E[XY ] = lim
n→∞

E[XnYn] = lim
n→∞

4n∑
j=1

4n∑
k=1

xn,jyn,kP (An,j ∩Bn,k)

= lim
n→∞

4n∑
j=1

4n∑
k=1

xn,jyn,kP (An,j)P (Bn,k) = lim
n→∞

4n∑
j=1

xn,jP (An,j) ·
4n∑
k=1

yn,kP (Bn,k)

= lim
n→∞

E[Xn] lim
n→∞

E[Yn] = E[XY ].

If X and Y are independent and integrable, then {X−, X+} is independent of {Y −, Y +}, so

E[XY ] = E[(X+ −X−)(Y + − Y −)] = E[X+]E[Y +]− E[X+]E[Y −]

−
(
E[X−]E[Y +]− E[X−]E[Y −]

)
= E[X+]E[Y ]− E[X−]E[Y ] = E[X]E[Y ]. □
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This factorization formula immediately extends to any �nite number of independent random variables because

Corollary 5.4 ensures that if X1, . . . , Xn are independent, then X1 and X2 · · ·Xn are as well, hence

E[X1 · · ·Xn] = E[X1]E[X2 · · ·Xn] = E[X1] · · ·E[Xn]

by the implicit induction hypothesis.

Likewise, if X1, . . . , Xn are independent and f1, . . . , fn : R → R are measurable, then f1(X1), . . . , fn(Xn)

are independent, hence

E
[ n∏
k=1

fk(Xk)
]
=

n∏
k=1

E[fk(Xk)].

Before closing out this �rst section on expectation, we remark that while the monotone convergence theorem

is a great tool for constructing the integral, there are several other results for interchanging limits and

integration that will come in handy down the line.

We begin with Fatou's lemma, which is interesting in its own right and will enable any easy derivation of

what is perhaps the most useful of these limit theorems.

Lemma 6.10. If Xn ≥ C for all n ∈ N and some C ∈ R, then

E[lim inf
n→∞

Xn] ≤ lim inf
n→∞

E[Xn].

Proof. Let Yn = infm≥n Xm so that Y = limn→∞ Yn = lim infn→∞ Xn. Then Xn ≥ Yn and Yn ↗ Y ≥ C,

so monotonicity and monotone convergence yield

lim inf
n→∞

E[Xn] ≥ lim inf
n→∞

E[Yn] = E[Y ] = E[lim inf
n→∞

Xn]. □

By replacing Xn with −Xn and using the fact that lim infn→∞(−xn) = − lim supn→∞ xn, we see that if the

Xn are uniformly bounded above, then E[lim supn→∞ Xn] ≥ lim supn→∞ E[Xn].

We are now in a position to establish the celebrated dominated convergence theorem.

Theorem 6.11. If X,X1, X2, . . . are random variables with Xn → X a.s. and Y is an integrable random

variable with |Xn| ≤ Y for all n, then

lim
n→∞

E[Xn] = E[X].

Proof. By assumption, Y +Xn is a nonnegative random variable, so Fatou tells us that

E[Y ] + E[X] = E[Y +X] ≤ lim inf
n→∞

E[Y +Xn] = E[Y ] + lim inf
n→∞

E[Xn],

hence E[X] ≤ lim infn→∞ E[Xn].

Similarly, Y −Xn is a nonnegative random variable, so

E[Y ]− E[X] = E[Y −X] ≤ lim inf
n→∞

E[Y −Xn] = E[Y ]− lim sup
n→∞

E[Xn].

It follows that E[X] ≥ lim supn→∞ E[Xn] ≥ lim infn→∞ E[Xn] ≥ E[X], so the inequalities are all equalities

and the theorem has been proved. □

When Y ≡ C for some constant C > 0, the above is sometimes termed the bounded convergence theorem.
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As an initial illustration of the utility of this result, we provide a partial converse to our factorization rule

for independent random variables.

Proposition 6.12. X and Y are independent if E[f(X)g(Y )] = E[f(X)]E[g(Y )] for all bounded continuous

functions f and g.

Proof. Given any x, y ∈ R, de�ne

fn(t) =


1, t ≤ x

1− n(t− x), x < t ≤ x+ 1
n ,

0, t > x+ 1
n

gn(t) =


1, t ≤ y

1− n(t− y), y < t ≤ y + 1
n .

0, t > y + 1
n

Then bounded convergence and the assumptions give

P (X ≤ x, Y ≤ y) = E
[
lim

n→∞
fn(X)gn(Y )

]
= lim

n→∞
E [fn(X)]E [gn(Y )]

= E
[
lim

n→∞
fn(X)

] [
lim
n→∞

gn(Y )
]
= P (X ≤ x)P (Y ≤ y). □
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7 Further Properties

Higher Moments

A nice thing about expectation is that it describes some feature of a random variable's distribution in terms

of a single real number, the mean µ = E[X], which can be interpreted as the distribution's `center of mass'

or the `average value' taken by the random variable.

Of course, there are many other quantities that can capture di�erent features of the distribution.

De�nition. For k ∈ N, the kth moment of a random variable X is mk = E[Xk], provided this expectation

exists. If X has �nite mean µ = m1, its k
th central moment is ck = E[(X − µ)k].

After the mean, the most important of these is the second central moment, or variance, Var(X) = E[(X−µ)2].

The variance measures the dispersion or spread of a distribution: If Var(X) is small, most of the mass of

the distribution is concentrated around E[X], whereas a large variance implies that there is a reasonable

likelihood that the random variable takes values further from its mean.

Note that by linearity of expectation, we have the `shortcut formula'

Var(X) = E[X2 − 2µX + µ2] = E[X2]− 2µE[X] + µ2 = E[X2]− E[X]2.

A similar calculation shows that if E[X2] < ∞, then for any a ∈ R,

E[(X − a)2] = E[
(
(X − µ) + (µ− a)

)2
]

= E[(X − µ)2) + 2(µ− a)E[X − µ] + (µ− a)2 = Var(X) + (µ− a)2,

which is clearly minimized at a = µ. This is the sense in which µ = E[X] is our best guess for X: it's the

projection of X onto the space of constant functions from Ω to R.

Often, one describes the variance of a random variable X in terms of its standard deviation σX =
√
Var(X).

The two encode the same information since the variance is nonnegative, but the standard deviation is nice

because it's expressed in the same `units' as X. For instance, one easily checks that Var(aX+b) = a2Var(X)

for all a, b ∈ R, so σaX+b = |a|σX .

A related quantity captures the (linear) association between two random variables X1 and X2 having �nite

means µ1 and µ2, the covariance Cov(X1, X2) = E[(X1−µ1)(X2−µ2)], and we have the resemblant formula

Cov(X1, X2) = E[X1X2 − µ2X1 − µ1X2 + µ1µ2] = E[X1X2]− E[X1]E[X2].

Whereas the variance is necessarily nonnegative, the covariance is not so constrained. It's positive if, on

average, X1 and X2 are simultaneously larger than their means or simultaneously smaller, and it's negative

if X1 tends to exceed its mean when X2 subceeds its mean and vice versa.

The covariance is small when the association between the two is small�knowing that X1 > µ1 does not

provide much information about whether X2 > µ2.

Since the size of the covariance may be largely due to the individual dispersion of the two variates, one often

normalizes it to obtain the correlation

ρ(X1, X2) =
Cov(X1, X2)

σX1
σX2

.

The Cauchy-Schwarz inequality ensures that ρ(X1, X2) always has absolute value at most 1, and one can

verify that |ρ(X1, X2)| = 1 precisely when X2 = aX1 + b, with the sign determined by that of a.
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In the case where X1 and X2 are independent, we have E[X1X2] = E[X1]E[X2], so Cov(X1, X2) = 0.

However, two random variables may have covariance 0 (in which case we say they are uncorrelated), but still

be dependent.

Example 7.1. Suppose that X has �rst and third moment equal to 0. In this case, the third moment

is the third central moment, or skewness of the distribution, which measures the asymmetry of µX . (For

symmetric distributions, W =d −W , we have E[W 2k+1] = E[(−W )2k+1] = −E[W 2k+1], so the odd order

moments vanish when they exist.) In this case X and Y = X2 are clearly dependent, but Cov(X,Y ) =

E[X3]−E[X]E[X2] = 0. This is because the covariance/correlation is really measuring the linear relationship

between the variates.

Given random variables X1, . . . , Xn de�ned on a common probability space, we have by linearity of the

expected value that E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn].

If E[Xk] = µk is �nite for each k, then

Var(X1 + · · ·+Xn) = E

( n∑
k=1

Xk −
n∑

k=1

µk

)2
 = E

( n∑
k=1

(Xk − µk)

)2


= E

 n∑
k=1

(Xk − µk)
2 +

∑
i̸=j

(Xi − µi)(Xj − µj)


=

n∑
k=1

E[(Xk − µk)
2] + 2

∑
1≤i<j≤n

E[(Xi − µi)(Xj − µj)]

=

n∑
k=1

Var(Xk) + 2
∑
i<j

Cov(Xi, Xj).

Thus if X1, . . . , Xn are pairwise independent/uncorrelated, then the variance of their sum is the sum of their

variances.

Inequalities

In many applications, it is su�cient to obtain general bounds on the moments of a random variable, and

there are a number of nice results for doing so. To state our �rst, we need some facts about convex functions.

De�nition. A function φ : R → R is convex if for all x1, x2 ∈ R, λ ∈ [0, 1], we have

φ (λx1 + (1− λ)x2) ≤ λφ(x1) + (1− λ)φ(x2).

Thus φ is convex if the secant line connecting
(
x1, φ(x1)

)
to
(
x2, φ(x2)

)
always lies above the graph of φ.

Example 7.2. If φ is twice-di�erentiable, convexity is equivalent to φ′′(x) > 0 for all x. To see this, note that

a second order Taylor expansion around any x0 ∈ R gives φ(x) = φ(x0)+φ′(x0)(x−x0)+
1
2φ

′′(x∗)(x−x0)
2

for some x∗ between x and x0; in particular, φ(x) ≥ φ(x0) + φ′(x0)(x− x0).

For any x1, x2 ∈ R, taking x0 = λx1 + (1− λ)x2 yields

φ(x1) ≥ φ(x0) + φ′(x0)(x1 − x0),

φ(x2) ≥ φ(x0) + φ′(x0)(x2 − x0),
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hence

λφ(x1) + (1− λ)φ(x2) ≥ λφ(x0) + λφ′(x0)(x1 − x0) + (1− λ)φ(x0) + (1− λ)φ′(x0)(x2 − x0)

= φ(x0) + φ′(x0)[λx1 + (1− λ)x2 − x0] = φ(λx1 + (1− λ)x2).

Thus, for example, f(x) = x2 and g(x) = ex are both convex functions.

In the case of a twice-di�erentiable convex function φ, the inequality φ(x) ≥ φ(x0) + φ′(x0)(x − x0) says

that the graph of φ always lies strictly above the tangent line to that graph at any point.

It turns out (and is not especially hard to prove), that an analogous statement is true for any convex function.

Fact 7.3. If φ is convex, then for any c ∈ R, there is a linear function ℓ(x) which satis�es ℓ(c) = φ(c) and

ℓ(x) ≤ φ(x) for all x ∈ R.

It is now a short step to derive the remarkably utile Jensen's inequality.

Theorem 7.4. If φ is a convex function and X is a random variable, then

φ (E[X]) ≤ E [φ(X)]

whenever the expectations exist.

Proof. Fact 7.3 gives the existence of a function ℓ(x) = ax + b which satis�es ℓ (E[X]) = φ (E[X]) and

ℓ(x) ≤ φ(x) for all x ∈ R.

By monotonicity and linearity, we have

E[φ(X)] ≥ E[ℓ(X)] = E[aX + b] = aE[X] + b = ℓ (E[X]) = φ (E[X]) . □

The triangle inequality, E |X| ≥ |E[X]|, is an important special case of Theorem 7.4.

To state our next result, Hölder's inequality, we de�ne the Lp-norm of a random variable by ∥X∥p = E [|X|p]
1
p

for p ∈ [1,∞) and ∥X∥∞ = inf{M : P (|X| > M) = 0}.

Theorem 7.5. If p, q ∈ [1,∞] with 1
p + 1

q = 1 (where 1
∞ := 0), then

∥XY ∥1 ≤ ∥X∥p ∥Y ∥q .

Proof. We �rst note that the result holds trivially if the right-hand side is in�nity, and if ∥X∥p = 0 or

∥Y ∥q = 0, then |XY | = 0 a.s.

Accordingly, we may assume that 0 < ∥X∥p , ∥Y ∥q < ∞. In fact, since constants factor out of Lp-norms, it

su�ces to establish the result when ∥X∥p = ∥Y ∥q = 1.

Also, the case p = ∞, q = 1 (and symmetrically) is immediate since |X| ≤ ∥X∥∞ a.s., thus

E |XY | ≤ E [∥X∥∞ |Y |] = ∥X∥∞ E |Y | = ∥X∥∞ ∥Y ∥1 .

Accordingly, we will assume henceforth that p, q ∈ (1,∞).

Now �x y ≥ 0, and de�ne the function φ : [0,∞) → R by φ(x) = xp

p + yq

q − xy.

Since φ′(x) = xp−1 − y and φ′′(x) = (p− 1)xp−2 > 0 for x > 0, φ attains its minimum at x0 = y
1

p−1 .
37



Thus, as the conjugacy of p and q implies that q =
(
1− 1

p

)−1

= p
p−1 = 1

p−1 + 1, we have that

φ(x) ≥ φ(x0) =
xp
0

p
+

yq

q
− x0y =

y
p

p−1

p
+

yq

q
− y

1
p−1+1 = yq

(
1

p
+

1

q

)
− yq = 0

for all x > 0. It follows that xp

p + yq

q ≥ xy for every x, y ≥ 0.

In particular, taking x = |X|, y = |Y |, and integrating, we have

E |XY | =
∫

|X| |Y | dP ≤ 1

p

∫
|X|p dP +

1

q

∫
|Y |q dP

=
∥X∥pp
p

+
∥Y ∥qq
q

=
1

p
+

1

q
= 1 = ∥X∥p ∥Y ∥q . □

Some useful corollaries of Hölder's inequality are:

Corollary 7.6 (Cauchy-Schwarz). E |XY | ≤
√
E [X2]E [Y 2].

Alternate Proof. For all t ∈ R,

0 ≤ E
[
(|X|+ t |Y |)2

]
= E

[
X2
]
+ 2tE |XY |+ t2E

[
Y 2
]
= q(t),

thus the quadratic q(t) has at most one real root, so its discriminant satis�es

(2E |XY |)2 − 4E
[
X2
]
E
[
Y 2
]
≤ 0. □

Corollary 7.7. For any random variable X and any 1 ≤ r < s ≤ ∞, ∥X∥r ≤ ∥X∥s.

Proof. For s = ∞, we have |X|r ≤ ∥X∥r∞ a.s., hence

∥X∥rr =

∫
|X|r dP ≤

∫
∥X∥r∞ dP = ∥X∥r∞ .

For s < ∞, apply Holder's inequality to Xr and 1 with p = s
r , q = s

s−r to get

∥X∥rr = E [|X|r] ≤ ∥Xr∥p ∥1∥q =

(∫
|Xr|

s
r dP

) r
s

= ∥X∥rs . □

Our last big result is Chebychev's inequality, which is both simple and surprisingly practical.

Theorem 7.8. For any nonnegative random variable X and any a > 0,

P (X ≥ a) ≤ E[X]

a
.

Proof. Let A = {ω : X(ω) ≥ a}. Then

aP (X ≥ a) = a

∫
1AdP ≤

∫
X1AdP ≤

∫
XdP = E[X]. □

Corollary 7.9. For any (S,G)-valued random variable X and any measurable function φ : S → [0,∞),

P (φ(X) ≥ a) ≤ E[φ(X)]

a
.
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Some important cases of Corollary 7.9 for real-valued X are

• φ(x) = |x|: to control the probability that an integrable random variable is large.

• φ(x) = (x− E[X])
2
: to control the probability that a random variable with �nite variance is far from

its mean.

• φ(x) = etx: to establish exponential decay for random variables with moment generating functions

(concentration inequalities).

Change of Variables

The main practical use of the distribution of a random variable is that it enables us to transfer questions

about X from the abstract space (Ω,F) to the more familiar (R,B). This is especially helpful for computing

expectations, connecting our general theory back to the setting of undergraduate probability.

For discrete random variables, we easily recover the de�nition of expectation as a sum against the pmf:

If Range(X) = {x1, . . . , xn}, then X =
∑n

k=1 xk1Ak
with Ak = X−1(xk), so our de�nition for simple

functions gives E[X] =
∑n

k=1 xkP (Ak) =
∑n

k=1 xkP (X = xk);

If X is nonnegative with range {x1, x2, . . .}, then Xn =
∑n

k=1 xk1Ak
↗ X, so monotone convergence gives

E[X] = limn→∞ E[Xn] = limn→∞
∑n

k=1 xkP (X = xk) =
∑∞

k=1 xkP (X = xk);

If X has countable range and is integrable, then X+ and X− are nonnegative with countable ranges and

�nite expectation, so

E[X] = E[X+]− E[X−] =
∑

j:xj≥0

xjP (X = xj)−
∑

k:xk<0

|xk|P (X = xk) =

∞∑
k=1

xkP (X = xk)

where absolute convergence justi�es rearranging the summands.

In order to deal with more complicated cases, we record the following change of variables theorem, which

allows us to compute expectations by integrating functions of a random variable against its distribution.

Theorem 7.10. Let X be a random variable taking values in the measurable space (S,G), and let µ = P ◦X−1

be the pushforward measure on (S,G).
If f is a measurable function from (S,G) to (R,B) such that f ≥ 0 or E |f(X)| < ∞, then

E[f(X)] =

∫
S

f(s) dµ(s).

Proof. We will proceed by verifying the result in increasingly general cases paralleling the construction of

the integral.

To begin with, let B ∈ G and f = 1B . Then

E[f(X)] = E[1B(X)] = P (X ∈ B) = µ(B) =

∫
S

1B(s) dµ(s) =

∫
S

f(s) dµ(s).

Now suppose that f =
∑n

i=1 ai1Bi
is a simple function. Then by linearity and the previous case,

E[f(X)] =

n∑
i=1

aiE[1Bi(X)] =

n∑
i=1

ai

∫
S

1Bi(s) dµ(s) =

∫
S

f(s) dµ(s).
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If f ≥ 0, then Theorem 6.4 gives a sequence of simple functions ϕn ↗ f , so the previous case and two

applications of the monotone convergence give

E[f(X)] = lim
n→∞

E[ϕn(X)] = lim
n→∞

∫
S

ϕn(s) dµ(s) =

∫
S

f(s) dµ(s).

Finally, suppose that E |f(X)| < ∞, and set f+(x) = max{f(x), 0}, f−(x) = max{−f(x), 0}. Then

f+, f− ≥ 0, f = f+ − f−, and E[f(X)+], E[f(X)−] ≤ E |f(X)| < ∞, so it follows from the previous result

and linearity that

E[f(X)] = E[f+(X)]− E[f−(X)] =

∫
S

f+(s) dµ(s)−
∫
S

f−(s) dµ(s) =

∫
S

f(s) dµ(s). □

If X has density f , then µ(A) =
∫
A
dµ(x) =

∫
A
f(x) dx (where we use the notation

∫
A
dν =

∫
1Adν), so

Theorem 7.10 shows that for any measurable g : R → R with g ≥ 0 a.s. or
∫
|g| dµ < ∞,

E[g(X)] =

∫ ∞

−∞
g(x)f(x) dx.

An immediate corollary of Theorem 7.10 is that the expectation of a random variable is determined by its

distribution.

Corollary 7.11. Let X and Y be random variables (possibly de�ned on di�erent probability spaces). Then

X =d Y if and only if E[f(X)] = E[f(Y )] for all measurable f for which the expectations exist in R.

Proof. Suppose X =d Y and let µ denote their common distribution. Then for all such f , we have E[f(X)] =∫∞
−∞ f(x) dµ(x) = E[f(Y )].

Conversely, if E[f(X)] = E[f(Y )] for all f , taking f = 1A for any A ∈ B gives P (X ∈ A) = E[1A(X)] =

E[1A(Y )] = P (Y ∈ A), hence X =d Y . □

Product Measure

If X1, . . . , Xn are random variables de�ned on a common probability space (Ω,F , P ), we de�ne their joint

distribution as the probability µX1,...,Xn(A) := P
(
(X1, . . . , Xn) ∈ A

)
on (Rn,Bn).

Since Bn is generated by
{
(−∞, x1]×· · ·×(−∞, xn] : x1, . . . , xn ∈ R

}
and P is countably additive, Theorem

3.14 ensures that there is a unique measure µ on Bn (or its completion) satisfying

µ
(
(−∞, x1]× · · · × (−∞, xn]

)
= P (X1 ≤ x1, . . . , Xn ≤ xn) =: FX1,...,Xn(x1, . . . , xn)

for all x1, . . . , xn ∈ R.

That is, the joint distribution µX1,...,Xn is uniquely determined by the joint cdf FX1,...,Xn .

Note that the marginal distribution of Xi can be recovered as

µXi(A) = P (X1 ∈ R, . . . , Xi ∈ A, . . . ,Xn ∈ R) = µX1,...,Xn(R× · · · ×A× · · · × R),

and independence of X1, . . . , Xn is equivalent to the statement that the joint distribution factors as

µX1,...,Xn(A1 × · · · ×An) = µX1(A1) · · ·µXn(An)

for all A1, . . . , An ∈ B.
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Our next result will allow us to construct a probability space supporting �nitely many independent random

variables with speci�ed marginals.

Proposition 7.12. Given probability spaces (Ω1,F1, µ1) and (Ω2,F2, µ2), there exists a unique measure

µ1 × µ2 on (Ω1 × Ω2,F1 ⊗F2) that satis�es (µ1 × µ2)(A× E) = µ1(A)µ2(E) for all A ∈ F1, E ∈ F2.

Proof. Since σ-algebras are semialgebras, Example 3.3 shows that R = {A × E : A ∈ F1, E ∈ F2} is a

semialgebra, and Proposition 11.27 shows it generates F1 ⊗F2.

De�ne ν : R → [0,∞) by ν(A× E) = µ1(A)µ2(E).

In light of Theorem 3.14, the result will follow if we can prove that for any countable disjoint union of sets

{Ai × Ei}i∈I in R such that A× E =
⋃

i∈I(Ai × Ei) ∈ R, we have ν (A× E) =
∑

i∈I ν(Ai × Ei).

(Clearly ν(∅) = 0 and ν(Ω1 ×Ω2) = 1, and countable additivity implies both �nite additivity and countable

subadditivity, so ν will be a protomeasure if this condition obtains.)

To see that this is so, observe that for all (x, y) ∈ Ω1 × Ω2,

1A(x)1E(y) = 1A×E

(
(x, y)

)
=
∑
i∈I

1Ai×Ei

(
(x, y)

)
=
∑
i∈I

1Ai(x)1Ei(y).

Consequently,

µ1(A)1E(y) =

∫
Ω1

1A(x)1E(y) dµ1(x) =

∫
Ω1

∑
i∈I

1Ai
(x)1Ei

(y) dµ1(x)

=
∑
i∈I

∫
Ω1

1Ai(x)1Ei(y) dµ1(x) =
∑
i∈I

(∫
Ω1

1Ai(x) dµ1(x)

)
1Ei(y)

=
∑
i∈I

µ1(Ai)1Ei
(y).

The interchange of summation and integration in the second line is justi�ed by the monotone convergence

theorem.

Integrating against µ2 then gives

ν(A× E) = µ1(A)µ2(E) =

∫
Ω2

µ1(A)1E(y) dµ2(y) =

∫
Ω2

∑
i∈I

µ1(Ai)1Ei
(y) dµ2(y)

=
∑
i∈I

µ1(Ai)

∫
Ω2

1Ei
(y) dµ2(y) =

∑
i∈I

µ1(Ai)µ2(Ei) =
∑
i∈I

ν(Ai × Ei). □

By induction, given (Ω1,F1, P1), . . . , (Ωn,Fn, Pn), we see that there is a unique probability P1 × · · · ×Pn on(∏n
i=1 Ωi,

⊗n
i=1 Fi

)
satisfying P (A1 × · · · ×An) =

∏n
i=1 P (Ai). The projections Xi

(
(ω1, . . . , ωn)

)
= ωi are

clearly independent with µXi = µi.

The main tool for integrating against product measure is the Fubini-Tonelli theorem, the proof of which

is relegated to the appendix. (Tonelli's theorem treats nonnegative functions and Fubini extends to those

which are integrable. In practice, one applies Tonelli to |f | in order to then deduce Fubini.)

Fact 7.13. Suppose that (R,F , µ) and (S,G, ν) are probability spaces. If a measurable function f : R×S → R
is nonnegative or integrable, then∫

R×S

f d(µ× ν) =

∫
S

(∫
R

f(x, y) dµ(x)

)
dν(y) =

∫
R

(∫
S

f(x, y) dν(y)

)
dµ(x).
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In order to build an in�nite sequence of independent random variables with given distribution functions,

we need to perform the above construction on the in�nite product space

RN =
{
(ω1, ω2, ...) : ωi ∈ R

}
=
{
functions ω : N → R

}
.

The product σ-algebra BN is generated by cylinder sets of the form{
ω ∈ RN : ωi ∈ (ai, bi] for i = 1, ..., n

}
,

and the random variables are the projections Xi(ω) = ωi.

(In the de�nition of cylinders, we take −∞ ≤ ai ≤ bi ≤ ∞ with the interpretation that (ai,∞] = (ai,∞).

aj = bj for any j gives the empty set.)

Clearly, the desired measure should satisfy

P
(
{ω ∈ RN : ωi ∈ (ai, bi] for i = 1, ..., n}

)
=

n∏
i=1

(Fi(bi)− Fi(ai))

on the cylinders.

To see that we can uniquely extend this to all of BN, we appeal to the following Kolmogorov extension

theorem, a proof of which can be found in the appendix.

Fact 7.14. Suppose that we are given a sequence of probability measures µn on (Rn,Bn) which are consistent

in the sense that

µn+1 ((a1, b1]× · · · × (an, bn]× R) = µn ((a1, b1]× · · · × (an, bn]) .

Then there is a unique probability measure P on (RN,BN) with

P
({

ω ∈ RN : ωi ∈ (ai, bi], i = 1, ..., n
})

= µn ((a1, b1]× · · · × (an, bn]) .

In particular, given distribution functions F1, F2, ..., if we de�ne the µn's by the condition

µn ((a1, b1]× · · · × (an, bn]) =

n∏
i=1

(Fi(bi)− Fi(ai)) ,

then the projections Xn(ω) = ωn are independent with P (Xn ≤ x) = Fn(x).
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8 Convergence in Probability and the WLLN

Large number laws give conditions for the arithmetic average of repeated observations to converge in certain

senses. Among other things, they justify and formalize our intuitive notions of probability as representing

some kind of measure of long-term relative frequency.

Convergence in Probability and Lp

De�nition. A sequence of random variables X1, X2, ... is said to converge to X in probability if for every

ε > 0, lim
n→∞

P (|Xn −X| > ε) = 0. In this case, we write Xn →p X.

Note that if Xn →p X, then limn→∞ P (|Xn −X| < ε) = 1 for all ε > 0, while Xn → X a.s. implies

that P (limn→∞ |Xn −X| < ε) = 1 for all ε > 0. The following proposition and example demonstrate the

importance of the placement of the limit in the two de�nitions.

Proposition 8.1. If Xn → X a.s., then Xn →p X.

Proof. Let ε > 0 be given and de�ne

An =
⋃

m≥n

{
|Xm −X| > ε

}
, A =

∞⋂
n=1

An,

E =
{
ω : lim

n→∞
Xn(ω) ̸= X(ω)

}
.

Since A1 ⊇ A2 ⊇ ..., continuity from above implies that P (A) = limn→∞ P (An).

Now if ω ∈ A, then for every n ∈ N, there is an m ≥ n with |Xm(ω)−X(ω)| > ε, so limn→∞ Xn(ω) ̸= X(ω),

and thus A ⊆ E.

Because we also have the inclusion {|Xn −X| > ε} ⊆ An, monotonicity gives

lim
n→∞

P (|Xn −X| > ε) ≤ lim
n→∞

P (An) = P (A) ≤ P (E) = 0

where the �nal equality is the de�nition of almost sure convergence. □

Example 8.2 (Scanning Interval). On the interval [0, 1) with Lebesgue measure, de�ne

X1 = 1[0,1), X2 = 1[0, 12 )
, X3 = 1[ 12 ,1)

, ..., X2n+k = 1[ k
2n , k+1

2n ), ...

It is straightforward thatXn →p 0�for any ε > 0,m ≥ 2n implies P (|Xm − 0| > ε) ≤ 1
2n�but limn→∞ Xn(ω)

does not exist for any ω since there are in�nitely many values of n with Xn(ω) = 1 and in�nitely many

values with Xn(ω) = 0.

The preceding shows that convergence in probability is weaker than almost sure convergence. Another mode

of convergence that shows up often in probability is with respect to the Lp norm.

De�nition. For p ∈ (0,∞], a sequence of random variables X1, X2, ... is said to converge to X in Lp if

lim
n→∞

∥Xn −X∥p = 0. (For p ∈ (0,∞), this is equivalent to E [|Xn −X|p] → 0.)
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Proposition 8.3. For any 1 ≤ r < s ≤ ∞, if Xn → X in Ls, then Xn → X in Lr.

Proof. If Xn → X in Ls, then Corollary 7.7 implies ∥Xn −X∥r ≤ ∥Xn −X∥s → 0. □

Proposition 8.4. If Xn → X in Lp for p > 0, then Xn →p X.

Proof. By the previous proposition, we can assume p < ∞. For any ε > 0, Chebychev's inequality gives

P (|Xn −X| > ε) = P (|Xn −X|p > εp) ≤ ε−pE [|Xn −X|p] → 0. □

Example 8.5. On [0, 1] with Lebesgue measure, de�ne a sequence of random variables by Xn = n
1
p 1(0,n−1],

p ∈ (0,∞). Then Xn → 0 a.s. (and thus in probability) since for all ω ∈ (0, 1], Xn(ω) = 0 whenever

n > ω−1. However, E [|Xn − 0|p] = 1 for all n, so Xn ↛ 0 in Lp. Additionally, ∥Xn − 0∥∞ = n
1
p diverges.

Proposition 8.4 and Example 8.5 show that Lp convergence is stronger than convergence in probability.

Example 8.5 also shows that almost sure convergence need not imply convergence in Lp (unless one makes

additional assumptions such as boundedness or uniform integrability).

Conversely, Example 8.2 shows that Lp convergence does not imply almost sure convergence for p < ∞;

since |X| ≤ ∥X∥∞ a.s., L∞ convergence implies a.s. (uniform) convergence.

As one can pass limits through continuous functions, it's immediate thatXn → X a.s. implies f(Xn) → f(X)

a.s. for any continuous f : R → R. We will see later that convergence in probability is also preserved by

continuous functions. However, Lp convergence need not be. For example, on [0, 1] with Lebesgue measure,

Xn = n
1
2 1(0,n−p) converges to 0 in Lp for p < ∞, but if f(x) = x2, ∥f(Xn)− f(0)∥p = 1 for all n.

Weak Laws of Large Numbers

Theorem 8.6. Let X1, X2, ... be uncorrelated random variables with common mean E[Xi] = µ and uniformly

bounded variance Var(Xi) ≤ C < ∞, and set Sn = X1 + ...+Xn. Then
1
nSn → µ in L2 and in probability.

Proof. Since E
[
1
nSn

]
= 1

n

∑n
i=1 µ = µ, we see that

E

[(
1

n
Sn − µ

)2
]
= Var

(
1

n
Sn

)
=

1

n2

n∑
i=1

Var(Xi) ≤
nC

n2
→ 0

as n → ∞, hence 1
nSn → µ in L2. By Proposition 8.4, 1

nSn →p µ as well. □

Specializing to the case where the Xi's are independent and identically distributed (or i.i.d.), we have the

oft-quoted weak law

Corollary 8.7. If X1, X2, ... are i.i.d. with mean µ and variance σ2 < ∞, then Xn = 1
n

∑n
i=1 Xi converges

in probability to µ.

The statistical interpretation of Corollary 8.7 is that under mild conditions, if the sample size is su�ciently

large, then the sample mean will be close to the population mean with high probability.
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The following amusing result can be interpreted as saying that a high-dimensional cube is almost a sphere.

Example 8.8. Let X1, X2, ... be independent and uniformly distributed on [−1, 1]. Then X2
1 , X

2
2 , ... are i.i.d.

with E[X2
i ] =

∫ 1

−1
x2

2 dx = 1
3 and Var(X2

i ) ≤ E[X4
i ] ≤ 1, so Corollary 8.7 shows that 1

n

∑n
i=1 X

2
i converges

to 1
3 in probability.

Now given ε ∈ (0, 1), write An,ε =
{
x ∈ Rn : (1− ε)

√
n
3 ≤ ∥x∥ ≤ (1 + ε)

√
n
3

}
where ∥x∥ = (x2

1 + ...+ x2
n)

1
2

is the usual Euclidean distance, and let m denote Lebesgue measure. We have

m (An,ε ∩ [−1, 1]n)

2n
= P ((X1, ..., Xn) ∈ An,ε) = P

(1− ε)

√
n

3
≤

√√√√ n∑
i=1

X2
i ≤ (1 + ε)

√
n

3


= P

(
1

3
(1− 2ε+ ε2) ≤ 1

n

n∑
i=1

X2
i ≤ 1

3
(1 + 2ε+ ε2)

)

≥ P

(∣∣∣∣∣ 1n
n∑

i=1

X2
i − 1

3

∣∣∣∣∣ ≤ 2ε− ε2

3

)
,

so that
m(An,ε∩[−1,1]n)

2n → 1 as n → ∞. In words, most of the volume of the cube [−1, 1]n comes from An,ε,

which is almost the boundary of the ball centered at the origin with radius
√

n
3 .

Our next set of examples concern the limiting behavior of row sums of triangular arrays, for which we appeal

to the following easy generalization of Theorem 8.6.

Theorem 8.9. Given a triangular array of integrable random variables, {Xn,k}n∈N,k∈[n], let Sn =
∑n

k=1 Xn,k

denote the nth row sum, and write µn = E[Sn], σ
2
n = Var(Sn). If {bn}∞n=1 satis�es lim

n→∞
σ2
n

b2n
= 0, then

Sn − µn

bn
→p 0.

Proof. By assumption, E

[(
Sn−µn

bn

)2]
= Var(Sn)

b2n
→ 0 as n → ∞, so the result follows since L2 convergence

implies convergence in probability. □

Example 8.10 (Coupon Collector's Problem). Suppose that there are n distinct types of coupons and each

time one obtains a coupon it is, independent of prior selections, equally likely to be any one of the types.

We are interested in the number of draws needed to obtain a complete set. To this end, let Tn,k denote the

number of draws needed to collect k distinct types for k = 1, ..., n and note that Tn,1 = 1. Set Xn,1 = 1 and

Xn,k = Tn,k − Tn,k−1 for k = 2, ..., n so that Xn,k is the number of trials needed to obtain a type di�erent

from the �rst k − 1. The number of draws needed to obtain a complete set is given by

Tn := Tn,n = 1 +

n∑
k=2

(Tn,k − Tn,k−1) = 1 +

n∑
k=2

Xn,k.

By construction, Xn,2, ..., Xn,n are independent with P (Xn,k = m) =
(
n−k+1

n

) (
k−1
n

)m−1
for m ∈ N.

Now a random variable X with P (X = m) = p(1− p)m−1 is said to be geometric with success probability p.

A little calculus gives

E[X] =

∞∑
m=1

mp(1− p)m−1 = p

∞∑
m=1

− d

dp
(1− p)m = −p

d

dp

1− p

p
=

1

p
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and

E[X2] =

∞∑
m=1

m2p(1− p)m−1 =

∞∑
m=1

[m(m− 1) +m]p(1− p)m−1

= p(1− p)

∞∑
m=1

m(m− 1)(1− p)m−2 +

∞∑
m=1

mp(1− p)m−1

= p(1− p)

∞∑
m=2

d2

dp2
(1− p)m + E[X] = p(1− p)

d2

dp2
(1− p)2

p
+

1

p

=
2(1− p)

p2
+

1

p
=

2− p

p2
,

hence

Var(X) = E[X2]− E[X]2 =
1− p

p2
≤ 1

p2
.

It follows that

E[Tn] = 1 +

n∑
k=2

E[Xn,k] = 1 +
n∑

k=2

n

n− k + 1
= 1 + n

n−1∑
j=1

1

j
= n

n∑
j=1

1

j

and

Var(Tn) =

n∑
k=2

Var(Xn,k) ≤
n∑

k=2

(
n

n− k + 1

)2

= n2
n−1∑
j=1

1

j2
≤ n2

∞∑
j=1

1

j2
=

π2n2

6
.

Taking bn = n log(n) we have Var(Tn)
b2n

≤ π2

6 log(n)2 → 0, so Theorem 8.9 implies
Tn−n

∑n
k=1 k−1

n log(n) →p 0.

Using the inequality

log(n) ≤
n∑

k=1

1

k
≤ log(n) + 1

(which can be seen by bounding log(n) =
∫ n

1
dx
x with the upper Riemann sum

∑n−1
k=1

1
k ≤

∑n
k=1

1
k and the

lower Riemann sum
∑n

k=2
1
k =

∑n
k=1

1
k − 1 ), we conclude that

Tn

n log(n)
→p 1.

Example 8.11 (Occupancy Problem). Suppose that we drop rn balls at random into n bins where
rn
n

→ c.

Letting Xn,k = 1 {bin k is empty} , the number of empty bins is Xn =
∑n

k=1 Xn,k.

It is clear that

E[Xn] =

n∑
k=1

E[Xn,k] =

n∑
k=1

P (bin k is empty) = n

(
n− 1

n

)rn

and

E[X2
n] = E

 n∑
k=1

X2
n,k + 2

∑
i<j

Xn,iXn,j

 =

n∑
k=1

E[Xn,k] + 2
∑
i<j

E[Xn,iXn,j ]

=

n∑
k=1

P (bin k is empty) + 2
∑
i<j

P (bins i and j are empty)

= n

(
n− 1

n

)rn

+ 2

(
n

2

)(
n− 2

n

)rn

= n

(
1− 1

n

)rn

+ n(n− 1)

(
1− 2

n

)rn

,

so

Var(Xn) = E[X2
n]− E[Xn]

2 = n

(
1− 1

n

)rn

+ n(n− 1)

(
1− 2

n

)rn

− n2

(
1− 1

n

)2rn

.
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Now L'Hospital's rule gives lim
n→∞

log
(
n−1
n

)
n−1

= lim
n→∞

n−2

−n−2
· n

n− 1
= −1, so, since

rn
n

→ c, we have that

log

[(
n− 1

n

)rn]
=

rn
n

·
log
(
n−1
n

)
n−1

→ −c and thus

(
n− 1

n

)rn

→ e−c as n → ∞.

Similarly,

(
1− 2

n

)rn

,

(
1− 1

n

)2rn

→ e−2c.

Consequently,
E[Xn]

n
=

(
n− 1

n

)rn

→ e−c and

Var(Xn)

n2
=

(
1− 1

n

)rn
n

+
n(n− 1)

n2

(
1− 2

n

)rn

−
(
1− 1

n

)2rn

→ 0 + 1 · e−2c − e−2c = 0

as n → ∞, so taking bn = n in Theorem 8.9 shows that the proportion of empty bins,
Xn

n
, converges to e−c

in probability.

We conclude this section with a weakening of the moment assumptions in the classical WLLN. The trick is to

use truncation in order to consider cases where we have control over the size and the probability, respectively.

Theorem 8.12. Suppose that X1, X2, ... are i.i.d. with E |X1| < ∞. Let Sn =
∑n

i=1 Xi and µ = E[X1].

Then 1
nSn → µ in probability.

Proof. In what follows, the arithmetic average of the �rst n terms of a sequence of random variables Y1, Y2, ...

will be denoted by Y n = 1
n

∑n
i=1 Yi.

We �rst note that, by replacing Xi with X ′
i = Xi−µ if necessary, we may suppose without loss of generality

that E[Xi] = 0.

Thus we need to show that for given ε, δ > 0, there is an N ∈ N such that P
(∣∣Xn

∣∣ > ε
)
< δ whenever

n ≥ N .

To this end, we pick C < ∞ large enough that E [|X1| 1 {|X1| > C}] < η for some η to be determined.

(This is possible since |X1| 1 {|X1| ≤ n} ≤ |X1| and E |X1| < ∞, so limn→∞ E [|X1| 1 {|X1| ≤ n}] = E |X1|
by the dominated convergence theorem, hence E [|X1| 1 {|X1| > n}] = E |X1| − E [|X1| 1 {|X1| ≤ n}] → 0.)

Now de�ne

Wi = Xi1 {|Xi| ≤ C} − E [Xi1 {|Xi| ≤ C}]

Zi = Xi1 {|Xi| > C} − E [Xi1 {|Xi| > C}] .

By assumption, we have that

E |Zi| ≤ 2E [|X1| 1 {|X1| > C}] < 2η,

and thus, for every n ∈ N,

E
∣∣Zn

∣∣ = E

∣∣∣∣∣ 1n
n∑

i=1

Zi

∣∣∣∣∣ ≤ 1

n

n∑
i=1

E |Zi| ≤ 2η.

Also, the Wi's are i.i.d. with mean zero and satisfy |Wi| ≤ 2C by construction, so

E
[
W

2

n

]
=

1

n2

 n∑
i=1

E[W 2
i ] +

∑
i̸=j

E[WiWj ]

 =
E[W 2

1 ]

n
≤ 4C2

n
,
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and thus, by Jensen's inequality,

E
[∣∣Wn

∣∣]2 ≤ E
[
W

2

n

]
≤ 4C2

n
.

Consequently, if n ≥ N :=
⌈
4C2

η2

⌉
, then E

∣∣Wn

∣∣ ≤ η.

Finally, Chebychev's inequality and the fact that∣∣Xn

∣∣ = ∣∣Wn + Zn

∣∣ ≤ ∣∣Wn

∣∣+ ∣∣Zn

∣∣
imply that for n ≥ N ,

P
(∣∣Xn

∣∣ > ε
)
≤ P

(∣∣Wn

∣∣+ ∣∣Zn

∣∣ > ε
)
≤

E
∣∣Wn

∣∣+ E
∣∣Zn

∣∣
ε

<
3η

ε
.

Taking η = εδ
3 completes the proof. □

Finally, we mention that the weak law can be slightly upgraded to accommodate certain situations involving

in�nite means. A proof is given in the appendix, along with a fun example.

Fact 8.13. Let X1, X2, ... be i.i.d. with

xP (|X1| > x) → 0 as x → ∞.

Set Sn = X1 + ...+Xn and µn = E [X11 {|X1| ≤ n}]. Then 1
nSn − µn → 0 in probability.
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9 Borel-Cantelli Lemmas

Given a sequence of events A1, A2, ... ∈ F , we de�ne

lim supnAn :=

∞⋂
n=1

∞⋃
m=n

Am =
{
ω : ω is in in�nitely many An

}
,

which is often abbreviated as {An i.o.} where �i.o.� stands for �in�nitely often.�

The nomenclature derives from the straightforward identity lim sup
n→∞

1An
= 1

lim supnAn
.

One can likewise de�ne lim infnAn :=
⋃∞

n=1

⋂∞
m=n Am, the set of outcomes belonging to all but �nitely many

of the An, but little is gained by doing so since lim infnAn =
(
lim supnA

C
n

)C
.

To illustrate the utility of this notion, observe that Xn → X a.s. if and only if P (|Xn −X| > ε i.o.) = 0 for

every ε > 0.

Lemma 9.1 (Borel-Cantelli I). If
∑∞

n=1 P (An) < ∞, then P (An i.o.) = 0.

Proof. Let N =
∑∞

n=1 1An
denote the number of events that occur. Tonelli's theorem (or MCT) gives

E[N ] =

∞∑
n=1

E[1An ] =

∞∑
n=1

P (An) < ∞,

so it must be the case that N < ∞ a.s.

(Alternatively, writing Bn =
⋃∞

m=n Am, we see that Bn ↘
⋂∞

n=1 Bn = lim supnAn, so continuity from above

implies P (An i.o.) = limn→∞ P (Bn) ≤ limn→∞
∑∞

m=n P (An) = 0.) □

A nice application of the �rst Borel-Cantelli lemma is

Theorem 9.2. Xn →p X if and only if every subsequence
{
Xnm

}∞
m=1

has a further subsequence
{
Xnm(k)

}∞
k=1

such that Xnm(k)
→ X a.s. as k → ∞.

Proof. Suppose thatXn →p X and let
{
Xnm

}∞
m=1

be any subsequence. ThenXnm
→p X, so for every k ∈ N,

P
(
|Xnm

−X| > 1
k

)
→ 0 as m → ∞. It follows that we can choose a further subsequence

{
Xnm(k)

}∞
k=1

such

that P
(∣∣Xnm(k)

−X
∣∣ > 1

k

)
≤ 2−k for all k ∈ N. Since

∞∑
k=1

P

(∣∣Xnm(k)
−X

∣∣ > 1

k

)
≤ 1 < ∞,

the �rst Borel-Cantelli lemma shows that P
(∣∣Xnm(k)

−X
∣∣ > 1

k i.o.
)
= 0.

Because
{∣∣Xnm(k)

−X
∣∣ > ε i.o.

}
⊆
{∣∣Xnm(k)

−X
∣∣ > 1

k i.o.
}
for every ε > 0, we see that Xnm(k)

→ X a.s.

To prove the converse, we appeal to the following lemma.

Lemma 9.3. Let {yn}∞n=1 be a sequence of elements in a topological space. If every subsequence {ynm}∞m=1

has a further subsequence
{
ynm(k)

}∞
k=1

that converges to y, then yn → y.

Proof. If yn ↛ y, then there is an open set U ∋ y such that for every N ∈ N, there is an n ≥ N with

yn /∈ U , hence there is a subsequence {ynm
}∞m=1 with ynm

/∈ U for all m. By construction, no subsequence

of {ynm
}∞m=1 can converge to y, and the result follows by contraposition. □
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Now if every subsequence of {Xn}∞n=1 has a further subsequence that converges to X almost surely, then

applying Lemma 9.3 to the sequence yn = P (|Xn −X| > ε) for an arbitrary ε > 0 shows that Xn →p X. □

Since there are sequences that converge in probability but not almost surely (e.g. Example 8.2), it follows

from Theorem 9.2 and Lemma 9.3 that a.s. convergence does not come from a topology.

Theorem 9.2 can sometimes be used to upgrade results depending on almost sure convergence.

For example, one can show that the assumptions in Fatou's lemma and the dominated convergence theorem

can be weakened to require only convergence in probability.

To get a feel for how this works, we prove

Theorem 9.4. If f is continuous and Xn →p X, then f(Xn) →p f(X). If f is also bounded, then

E[f(Xn)] → E[f(X)].

Proof. If {Xnm} is a subsequence, then Theorem 9.2 guarantees the existence of a further subsequence{
Xnm(k)

}
that converges to X a.s. Since limits commute with continuous functions, this means that

f
(
Xnm(k)

)
→ f(X) a.s. The other direction of Theorem 9.2 now implies that f(Xn) →p f(X).

If f is bounded as well, then the dominated convergence theorem yields E
[
f
(
Xnm(k)

)]
→ E[f(X)].

Applying Lemma 9.3 to the sequence yn = E[f(Xn)] establishes convergence in expectation. □

We will now use the �rst Borel-Cantelli lemma to prove a weak form of the Strong Law of Large Numbers.

Theorem 9.5. Let X1, X2, ... be i.i.d. with E[X1] = µ and E
[
X4

1

]
< ∞. If Sn = X1 + ... + Xn, then

1
nSn → µ almost surely.

Proof. By taking X ′
i = Xi − µ, we can suppose without loss of generality that µ = 0. Now

E
[
S4
n

]
= E

( n∑
i=1

Xi

) n∑
j=1

Xj

( n∑
k=1

Xk

)(
n∑

l=1

Xl

) = E

 ∑
1≤i,j,k,l≤n

XiXjXkXl

 .

By independence, terms of the form E
[
X3

i Xj

]
, E

[
X2

i XjXk

]
and E [XiXjXkXl] are all zero (since the

expectation of the product is the product of the expectations).

The only non-vanishing terms are thus of the form E
[
X4

i

]
and E

[
X2

i X
2
j

]
, of which there are n of the former

and 3n(n − 1) of the latter (determined by the
(
n
2

)
ways of picking the indices and the

(
4
2

)
ways of picking

which two of the four sums gave rise to the smaller index).

Because E
[
X2

i X
2
j

]
= E

[
X2

i

]2 ≤ E
[
X4

i

]
, we have

E
[
S4
n

]
≤ nE

[
X4

1

]
+ 3n(n− 1)E

[
X2

1

]2 ≤ Cn2

where C = 3E
[
X4

1

]
< ∞ by assumption.

It follows from Chebychev's inequality that

P

(
1

n
|Sn| > ε

)
= P

(
|Sn|4 > (nε)4

)
≤ C

n2ε4
,

hence
∞∑

n=1

P

(
1

n
|Sn| > ε

)
≤ Cε−4

∞∑
n=1

1

n2
< ∞.

Therefore, P
(
1
n |Sn| > ε i.o.

)
= 0 by Borel-Cantelli, so, since ε > 0 was arbitrary, 1

nSn → 0 a.s. □
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A much more involved argument based on truncation and passing to a suitable subsequence shows that the

assumptions in the strong law can be weakened to E |X1| < ∞.

The converse of the Borel-Cantelli lemma is false without additional assumptions.

Example 9.6. Let Ω = [0, 1], F = Borel sets, P = Lebesgue measure, and de�ne An = (0, 1
n ).

Then
∑∞

n=1 P (An) =
∑∞

n=1
1
n = ∞ and lim supn→∞ An = ∅.

Lemma 9.7 (Borel-Cantelli II). If the events A1, A2, ... are independent, then
∑∞

n=1 P (An) = ∞ implies

P (An i.o.) = 1.

Proof. For each n ∈ N, the sequenceBn,1, Bn,2, ... de�ned byBn,k =
⋂n+k

m=n A
C
m decreases toBn :=

⋂∞
m=n A

C
m.

Also, since the Am's (and thus their complements) are independent, we have

P (Bn,k) = P

(
n+k⋂
m=n

AC
m

)
=

n+k∏
m=n

P
(
AC

m

)
=

n+k∏
m=n

(1− P (Am)) ≤
n+k∏
m=n

e−P (Am) = e−
∑n+k

m=n P (Am)

where the inequality is due to the Taylor series bound e−x ≥ 1− x for x ∈ [0, 1].

Because
∑∞

m=n P (Am) = ∞ by assumption, it follows from continuity from above that

P (Bn) = lim
k→∞

P (Bn,k) ≤ lim
k→∞

e−
∑n+k

m=n P (Am) = 0,

hence P (
⋃∞

m=n Am) = P
(
BC

n

)
= 1 for all n ∈ N.

Since
⋃∞

m=n Am ↘ lim supn→∞ An = {An i.o.}, another application of continuity from above gives

P (An i.o.) = lim
n→∞

P

( ∞⋃
m=n

Am

)
= 1. □

Taken together, the Borel-Cantelli lemmas show that if A1, A2, ... is a sequence of independent events, then

the event {An i.o.} occurs either with probability 0 or probability 1.

Thus if A1, A2, ... are independent, then P (An i.o.) > 0 implies P (An i.o.) = 1.

This is an example of a 0-1 law; we'll see another presently.

It follows from the second Borel-Cantelli lemma that in�nitely many independent trials of a random experi-

ment will almost surely result in in�nitely many realizations of any event having positive probability.

For example, an in�nite string with characters chosen independently and uniformly from a �nite alphabet

(produced by the proverbial monkey at a typewriter, say) will almost surely contain in�nitely many instances

of any �nite string (like the complete works of Shakespeare in chronological order).

Our next example is a typical application where the two Borel-Cantelli lemmas are used together to obtain

results on limits of (suitably scaled) sequences of i.i.d. random variables.

Example 9.8. Let X1, X2, ... be a sequence of i.i.d. exponential random variables with rate 1 (so that

Xi ≥ 0 with P (Xi ≤ x) = 1− e−x). We will show that lim supn→∞
Xn

log(n) = 1 a.s.
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First observe that

P

(
Xn

log(n)
≥ 1

)
= P (Xn ≥ log(n)) = P (Xn > log(n)) = e− log(n) =

1

n
,

so
∞∑

n=1

P

(
Xn

log(n)
≥ 1

)
=

∞∑
n=1

1

n
= ∞.

Since the Xn's are independent, the second Borel-Cantelli lemma implies that P
(

Xn

log(n) ≥ 1 i.o.
)
= 1, and

we conclude that lim supn→∞
Xn

log(n) ≥ 1 almost surely.

On the other hand, for any ε > 0,

P

(
Xn

log(n)
≥ 1 + ε

)
= P (Xn > (1 + ε) log(n)) =

1

n1+ε
,

which is summable, so it follows from the �rst Borel-Cantelli lemma that P
(

Xn

log(n) ≥ 1 + ε i.o.
)
= 0.

Since ε > 0 was arbitrary, this means that lim supn→∞
Xn

log(n) ≤ 1 almost surely, and the claim is proved.

We conclude this section with another famous 0-1 law.

De�nition. Given a sequence of random variables X1, X2, ..., the tail σ-�eld is T =

∞⋂
n=1

σ(Xn, Xn+1, ...).

Theorem 9.9 (Kolmogorov). If X1, X2, ... are independent and A ∈ T , then P (A) ∈ {0, 1}.

Proof. We will show that A is independent of itself so that P (A)2 = P (A)P (A) = P (A ∩A) = P (A).

To do so, we �rst note that B ∈ σ(X1, ..., Xk) and C ∈ σ(Xk+1, Xk+2, ...) are independent.

This follows from Lemma 5.3 if C ∈ σ(Xk+1, ..., Xk+j). Since σ(X1, ..., Xk) and
⋃∞

j=1 σ(Xk+1, ..., Xk+j) are

π-systems, Theorem 5.1 shows this is true in general.

Next, we observe that E ∈ σ(X1, X2, ...) and F ∈ T are independent.

If E ∈ σ(X1, ..., Xk), then this follows from the previous observation since F ∈ T ⊆ σ(Xk+1, Xk+2, ...).

Since
⋃∞

k=1 σ(X1, ..., Xk) and T are π-systems, Theorem 5.1 shows it is true in general.

Because T ⊆ σ(X1, X2, ...), the last observation shows that A ∈ T is independent of itself. □

Example 9.10. If B1, B2, ... ∈ B, then {Xn ∈ Bn i.o.} ∈ T . Taking Xn = 1An
, Bn = {1}, we see that

{Xn ∈ Bn i.o.} = {An i.o.}, so if A1, A2, ... are independent, then P (An i.o.) ∈ {0, 1}. Of course, this also
follows from the Borel-Cantelli lemmas.

Example 9.11. Let Sn = X1 + ...+Xn. Then

• {limn→∞ Sn exists} ∈ T since convergence of series only depends on their tails.

• A = {lim supn→∞ Sn > 0} /∈ T in general since the initial terms can e�ect the sign of the sum.

• If cn → ∞, then
{
lim supn→∞

1
cn
Sn > x

}
∈ T for all x ∈ R since the contribution from any �nite

number of terms of Sn will be killed by cn.
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10 Stein's Method and the CLT

Whereas large number laws treat the �rst order asymptotics of sums of random variables, central limit

theorems describe their �uctuations about these limits. There are a number of CLTs applying to di�erent

objects and operating under various assumptions, but the prototypical version says that if X1, X2, . . . are

i.i.d. with mean µ and variance σ2 ∈ (0,∞), then Sn =
∑n

i=1 Xi satis�es

Sn − nµ

σ
√
n

⇒ Z ∼ N (0, 1).

The double arrow here denotes weak convergence (or convergence in distribution/law), and we say that a

sequence {Xn} with distribution functions {Fn} converges weakly to a random variable X with distribution

function F if limn→∞ Fn(x) = F (x) for all x at which F is continuous. [There are a number of other

equivalent characterizations, and one can show that convergence in probability (and thus a.s. or in Lp)

implies weak convergence, but not conversely in general.]

The classical CLT is typically established by considering characteristic functions, de�ned by φX(t) = E[eitX ].

These necessarily exist for all t ∈ R and satisfy φa1X1+...+anXn
(t) =

∏n
i=1 φXi

(ait) if X1, . . . , Xn are inde-

pendent. Moreover, one can show that if φX is continuous at 0, then Xn ⇒ X i� φXn
(t) → φX(t) pointwise.

If X has mean 0 and variance σ2 < ∞, a second order Maclaurin expansion yields φX(t) = 1− 1
2σ

2t2+o(t2),

so the characteristic function of Sn−nµ
σ
√
n

is given by φn(t) =
(
1 − t2

2 + o(t2/n)
)n → e−

t2

2 , the ch.f. of a

standard normal.

It takes a fair amount of work to make all of this rigorous, and though one sees some nice stu� along the

way, we will opt here to pursue an alternative approach developed by Charles Stein in the 1960s and 1970s.

In addition to requiring less technical machinery, this method is highly adaptable to other situations in-

volving distributional convergence and approximation. Moreover, it does not require as rigid independence

assumptions as the characteristic function route and also yields convergence rates; while it's all well and

good to know that sample means are normal in the limit, in practice one would like to know how good the

normal approximation is for �nite n.

Broadly, Stein's method refers to a framework based on solutions of certain di�erential or di�erence equations

for bounding the distance between the distribution of a random variable X and that of a random variable

W having some speci�ed target distribution.

The metrics for which this approach is applicable are of the form

dH(L (X),L (W )) = sup
h∈H

|E[h(X)]− E[h(W )]|

for some suitable class of functionsH, and include the Kolmogorov, Wasserstein, and total variation distances

as special cases. These arise by taking H to be the set of indicators of right-closed rays, 1-Lipschitz functions,

and indicators of Borel sets, respectively. Convergence in each of these three metrics is strictly stronger than

weak convergence (which can be metrized by taking H to be the set of 1-Lipschitz functions with sup norm

at most 1).

The basic idea is to �nd an operator A such that E[(Af)(X)] = 0 for all f belonging to some su�ciently

large class of functions F if and only if L (X) = L (W ).

For example, we will see that W ∼ N (0, 1) if and only if E [f ′(W )−Wf(W )] = 0 for all Lipschitz f .
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If one can then show that for any h ∈ H, the equation

(Af)(x) = h(x)− E[h(W )]

has solution fh ∈ F , then upon taking expectations, absolute values, and suprema, they �nd that

dH(L (X),L (W )) = sup
h∈H

|E[h(X)]− E[h(W )]| = sup
h∈H

|E[(Afh)(X)]| .

Remarkably, it is often easier to work with the right-hand side of this equation and the techniques for

analyzing distances between probability distributions in this manner are collectively known as Stein's method.

We begin by establishing a characterizing operator for the standard normal.

Lemma 10.1. De�ne the operator A by

(Af) (x) = f ′(x)− xf(x).

If Z ∼ N (0, 1), then E [(Af) (Z)] = 0 for all absolutely continuous f with E |f ′(Z)| < ∞.

Proof. Let f be as in the statement of the lemma. Then Fubini's theorem gives

E[f ′(Z)] =
1√
2π

∫
R
f ′(x)e−

x2

2 dx =
1√
2π

∫ 0

−∞
f ′(x)e−

x2

2 dx+
1√
2π

∫ ∞

0

f ′(x)e−
x2

2 dx

=
1√
2π

∫ 0

−∞
f ′(x)

(
−
∫ x

−∞
ye−

y2

2 dy

)
dx+

1√
2π

∫ ∞

0

f ′(x)

(∫ ∞

x

ye−
y2

2 dy

)
dx

=
1√
2π

∫ 0

−∞
ye−

y2

2

(
−
∫ 0

y

f ′(x)dx

)
dy +

1√
2π

∫ ∞

0

ye−
y2

2

(∫ y

0

f ′(x)dx

)
dy

=
1√
2π

∫ 0

−∞
ye−

y2

2 (f(y)− f(0)) dy +
1√
2π

∫ ∞

0

ye−
y2

2 (f(y)− f(0)) dy

=
1√
2π

∫ ∞

−∞
yf(y)e−

y2

2 dy − f(0)
1√
2π

∫ ∞

−∞
ye−

y2

2 dy

= E[Zf(Z)]− f(0)E[Z] = E[Zf(Z)]. □

If ∥f ′∥∞ < ∞, then E |f ′(Z)| < ∞, and the condition E [(Af) (W )] = 0 whenever ∥f ′∥∞ < ∞ turns out to

be su�cient for W ∼ N (0, 1). For this class of functions, Lemma 10.1 is just integration by parts.

Lemma 10.2. If Φ is the distribution function for the standard normal, then the unique bounded solution

to the di�erential equation

f ′(w)− wf(w) = 1(−∞,x](w)− Φ(x)

is given by

fx(w) =

{ √
2πe

w2

2 (1− Φ(x)) Φ(w), w ≤ x
√
2πe

w2

2 Φ(x)(1− Φ(w)), w > x
.

Moreover, fx is absolutely continuous with ∥fx∥∞ ≤
√

π

2
and ∥f ′

x∥∞ ≤ 2.

Proof. Multiplying both sides of the equation f ′(t)− tf(t) = 1(−∞,x](t)−Φ(x) by the integrating factor e−
t2

2

shows that a bounded solution fx must satisfy

d

dt

(
e−

t2

2 fx(t)
)
= e−

t2

2 [f ′
x(t)− tfx(t)] = e−

t2

2

[
1(−∞,x](t)− Φ(x)

]
,
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and integration gives

fx(w) = e
w2

2

∫ w

−∞
e−

t2

2

(
1(−∞,x](t)− Φ(x)

)
dt

= −e
w2

2

∫ ∞

w

e−
t2

2

(
1(−∞,x](t)− Φ(x)

)
dt.

When w ≤ x, we have

fx(w) = e
w2

2

∫ w

−∞
e−

t2

2

(
1(−∞,x](t)− Φ(x)

)
dt = e

w2

2

∫ w

−∞
e−

t2

2 (1− Φ(x)) dt

=
√
2πe

w2

2 (1− Φ(x))
1√
2π

∫ w

−∞
e−

t2

2 dt =
√
2πe

w2

2 (1− Φ(x)) Φ(w),

and when w > x, we have

fx(w) = −e
w2

2

∫ ∞

w

e−
t2

2

(
1(−∞,x](t)− Φ(x)

)
dt = −e

w2

2

∫ ∞

w

e−
t2

2 (0− Φ(x)) dt

=
√
2πe

w2

2 Φ(x)
1√
2π

∫ ∞

w

e−
t2

2 dt =
√
2πe

w2

2 Φ(x)(1− Φ(w)).

To check boundedness, we �rst observe that for any z ≥ 0,

1− Φ(z) =
1√
2π

∫ ∞

z

e−
t2

2 dt =
1√
2π

∫ ∞

0

e−
(s+z)2

2 ds

=
1√
2π

e−
z2

2

∫ ∞

0

e−
s2

2 e−szds ≤ e−
z2

2
1√
2π

∫ ∞

0

e−
s2

2 ds =
1

2
e−

z2

2 ,

and, by symmetry, for any z ≤ 0,

Φ(z) = 1− Φ (|z|) ≤ 1

2
e−

z2

2 .

Since fx is nonnegative and fx(w) = f−x(−w), it su�ces to show that fx is bounded above for x ≥ 0.

If w > x ≥ 0, then

fx(w) =
√
2πe

w2

2 Φ(x)(1− Φ(w)) ≤
√
2πe

w2

2 · 1 · 1
2
e−

w2

2 =

√
π

2
;

If 0 < w ≤ x, then

fx(w) =
√
2πe

w2

2 (1− Φ(x)) Φ(w)

≤
√
2πe

w2

2 · 1
2
e−

x2

2 · 1 ≤
√
2πe

w2

2 · 1
2
e−

w2

2 =

√
π

2
;

and if w ≤ 0 ≤ x, then

fx(w) =
√
2πe

w2

2 (1− Φ(x)) Φ(w) ≤
√
2πe

w2

2 · 1 · 1
2
e−

w2

2 =

√
π

2
.

That fx is the only bounded solution follows by observing that the homogeneous equation f ′(w)−wf(w) = 0

has solution fh(w) = Ce
w2

2 for C ∈ R, so the general solution of our nonhomogeneous linear equation is

given by fx(w) + Cfh(w), which is bounded if and only if C = 0.

Finally, by construction, fx is di�erentiable at all points w ̸= x with f ′
x(w) = wfx(w) + 1(−∞,x](w)− Φ(x),

so that

|f ′
x(w)| ≤ |wfx(w)|+

∣∣1(−∞,x](w)− Φ(x)
∣∣ ≤ |wfx(w)|+ 1.
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For w > 0,

|wfx(w)| =
∣∣∣∣−we

w2

2

∫ ∞

w

e−
t2

2

(
1(−∞,x](t)− Φ(x)

)
dt

∣∣∣∣ ≤ we
w2

2

∫ ∞

w

e−
t2

2

∣∣1(−∞,x](t)− Φ(x)
∣∣ dt

≤ we
w2

2

∫ ∞

w

e−
t2

2 dt ≤ we
w2

2

∫ ∞

w

t

w
e−

t2

2 dt = e
w2

2

∫ ∞

w

te−
t2

2 dt = e
w2

2 e−
w2

2 = 1,

and for w < 0,

|wfx(w)| = |−wf−x(−w)| ≤ 1,

hence |f ′
x(w)| ≤ |wfx(w)|+ 1 ≤ 2.

Since fx is continuous and di�erentiable at all points w ̸= x with uniformly bounded derivative, it is Lipschitz

and thus absolutely continuous. □

An immediate consequence of the preceding lemmas is

Theorem 10.3. A random variable W has the standard normal distribution if and only if

E[f ′(W )−Wf(W )] = 0

for all Lipschitz f .

Proof. Lemma 10.1 establishes necessity.

For su�ciency, observe that for any x ∈ R, taking fx as in Lemma 10.2 implies

|P (W ≤ x)− Φ(x)| =
∣∣E [1(−∞,x](W )− Φ(x)

]∣∣ = |E [f ′
x(W )−Wfx(W )]| = 0. □

The methodology of Lemma 10.2 can be extended to cover test functions other than indicators of half-lines.

Indeed, the argument given there shows that for any function h : R → R such that

Nh := E[h(Z)] =
1√
2π

∫ ∞

−∞
h(z)e−

z2

2 dz

exists in R, the di�erential equation

f ′(w)− wf(w) = h(w)−Nh

has solution

(∗) fh(w) = e
w2

2

∫ w

−∞
(h(t)−Nh) e−

t2

2 dt.

Some fairly tedious computations show that

Fact 10.4. For any h : R → R such that Nh exists, let fh be given by (∗).
If h is bounded, then

∥fh∥∞ ≤
√

π

2
∥h−Nh∥∞ , ∥f ′

h∥∞ ≤ 2 ∥h−Nh∥∞ .

If h is absolutely continuous, then

∥fh∥∞ ≤ 2 ∥h′∥∞ , ∥f ′
h∥∞ ≤

√
2

π
∥h′∥∞ , ∥f ′′

h ∥∞ ≤ 2 ∥h′∥∞ .

(That the relevant derivatives are de�ned almost everywhere is part of the statement of Lemma 10.4.)
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We can now give bounds on the error in normal approximation for sums of i.i.d. random variables, which

will imply the central limit theorem.

We will work in the Wasserstein metric

dW (L (W ),L (Z)) = sup
h∈HW

|E[h(W )]− E[h(Z)]|

where

HW = {h : R → R such that |f(x)− f(y)| ≤ |x− y| for all x, y ∈ R}.

If Z ∼ N (0, 1), then the preceding analysis shows that

dW (L (W ),L (Z)) = sup
h∈HW

|E[f ′
h(W )−Wfh(W )]|

where fh is given by (∗).
Since Lipschitz functions are absolutely continuous, the second part of Lemma 10.4 applies with ∥h′∥∞ = 1.

From these observations and some elementary manipulations we have

Theorem 10.5. Suppose X1, X2, ..., Xn are independent random variables with E[Xi] = 0 and E[X2
i ] = 1

for all i = 1, ..., n. If W = 1√
n

∑n
i=1 Xi and Z ∼ N (0, 1), then

dW (L (W ),L (Z)) ≤ 3

n
3
2

n∑
i=1

E
[
|Xi|3

]
.

Proof. Let f be any di�erentiable function with f ′ absolutely continuous, ∥f∥∞ , ∥f ′∥∞ , ∥f ′′∥∞ < ∞.

For each i = 1, ..., n, set

Wi =
1√
n

∑
j ̸=i

Xj = W − 1√
n
Xi.

Then Xi and Wi are independent, so E[Xif(Wi)] = E[Xi]E[f(Wi)] = 0.

It follows that

E[Wf(W )] = E

[
1√
n

n∑
i=1

Xif(W )

]
= E

[
1√
n

n∑
i=1

Xi (f(W )− f(Wi))

]
.

Adding and subtracting E
[

1√
n

∑n
i=1 Xi(W −Wi)f

′(Wi)
]
yields

E[Wf(W )] = E

[
1√
n

n∑
i=1

Xi (f(W )− f(Wi)− (W −Wi)f
′(Wi))

]

+ E

[
1√
n

n∑
i=1

Xi(W −Wi)f
′(Wi)

]
.

The independence and unit variance assumptions show that

E[Xi(W −Wi)f
′(Wi)] = E

[
1√
n
X2

i f
′(Wi)

]
=

1√
n
E[X2

i ]E[f ′(Wi)] =
1√
n
E[f ′(Wi)],

so

E[Wf(W )] = E

[
1√
n

n∑
i=1

Xi (f(W )− f(Wi)− (W −Wi)f
′(Wi))

]
+ E

[
1

n

n∑
i=1

f ′(Wi)

]
,
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and thus

|E[f ′(W )−Wf(W )]|

=

∣∣∣∣∣E
[

1√
n

n∑
i=1

Xi (f(W )− f(Wi)− (W −Wi)f
′(Wi))

]
+ E

[
1

n

n∑
i=1

f ′(Wi)

]
− E[f ′(W )]

∣∣∣∣∣
=

∣∣∣∣∣E
[

1√
n

n∑
i=1

Xi (f(W )− f(Wi)− (W −Wi)f
′(Wi))

]
+ E

[
1

n

n∑
i=1

(f ′(Wi)− f ′(W ))

]∣∣∣∣∣
≤ 1√

n
E

[
n∑

i=1

|Xi (f(W )− f(Wi)− (W −Wi)f
′(Wi))|

]
+

1

n
E

[
n∑

i=1

|f ′(Wi)− f ′(W )|

]

The Taylor expansion (with Lagrange remainder)

f(w) = f(z) + f ′(z)(w − z) +
f ′′(ζ)

2
(w − z)2

for some ζ between w and z gives the bound

|f(w)− f(z)− (w − z)f ′(z)| ≤
∥f ′′∥∞

2
(w − z)2,

so

1√
n
E

[
n∑

i=1

|Xi (f(W )− f(Wi)− (W −Wi)f
′(Wi))|

]
≤ 1√

n
E

[
n∑

i=1

∣∣∣∣Xi
∥f ′′∥∞

2
(W −Wi)

2

∣∣∣∣
]

=
∥f ′′∥∞
2
√
n

n∑
i=1

E

∣∣∣∣∣Xi

(
Xi√
n

)2
∣∣∣∣∣ = ∥f ′′∥∞

2n
3
2

n∑
i=1

E
[
|Xi|3

]
.

Also, the mean value theorem shows that

1

n
E

[
n∑

i=1

|f ′(Wi)− f ′(W )|

]
≤ 1

n
E

[
n∑

i=1

(∥f ′′∥∞ |Wi −W |)

]
=

∥f ′′∥∞
n

3
2

n∑
i=1

E |Xi| .

As 1 = E[X2
i ] = E

[(
|Xi|3

) 2
3

]
≤ E

[
|Xi|3

] 2
3

, we have E
[
|Xi|3

]
≥ 1, so E |Xi| ≤ E

[
|Xi|3

] 1
3 ≤ E

[
|Xi|3

]
.

(The conclusion is trivial if E
[
|Xi|3

]
= ∞.)

Putting all of this together gives

|E[f ′(W )−Wf(W )]| ≤ 1√
n
E

[
n∑

i=1

|Xi (f(W )− f(Wi)− (W −Wi)f
′(Wi))|

]
+

1

n
E

[
n∑

i=1

|f ′(Wi)− f ′(W )|

]

≤
∥f ′′∥∞
2n

3
2

n∑
i=1

E
[
|Xi|3

]
+

∥f ′′∥∞
n

3
2

n∑
i=1

E |Xi| ≤
3 ∥f ′′∥∞
2n

3
2

n∑
i=1

E
[
|Xi|3

]
,

and the result follows since

dW (L (W ),L (Z)) = sup
h∈HW

|E[f ′
h(W )−Wfh(W )]|

and ∥f ′′
h ∥∞ ≤ 2 ∥h′∥∞ = 2 for all h ∈ HW . □

Of course the mean zero, variance one condition is just the usual normalization in the CLT and so imposes

no real loss of generality. If the random variables have uniformly bounded third moments, then Theorem

10.5 gives a rate of order n− 1
2 which is the best possible.
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11 Conditional Expectation

Let (Ω,F , P ) be a probability space and consider any A,B ∈ F with P (B) > 0. In undergraduate probability,

we de�ne the probability of A conditional on B as P (A |B ) = P (A ∩B)/P (B).

The idea is that if we learn B has occurred, then we must update our probability measure to account for

this information. Our new measure, PB , should satisfy PB(B) = 1 (since we know B has occurred) and, for

any E,F ∈ F with E,F ⊆ B, PB(E)P (F ) = P (E)PB(F ) (since we have learned nothing about the relative

likelihoods of events contained in B). It follows that for any A ∈ F ,

PB(A) = PB(A ∩B) + PB(A ∩BC) = PB(A ∩B) =
PB(A ∩B)

PB(B)
=

P (A ∩B)

P (B)
.

(The second equality is because we must have 1 = PB(Ω) = PB(B)+PB(B
C) = 1+PB(B

C), so monotonicity

dictates that events contained in BC have probability 0 under PB .)

When thinking about conditional probability, it can be instructive to take a step back and think of a second

observer with access to partial information. Here we interpret (Ω,F , P ) as describing a random system

whose chance of being in state ω ∈ Ω is governed by P . F represents the possible conclusions that can be

drawn about the state of the system: All that can be said is whether it lies in A for each A ∈ F .

Now suppose that the observer has performed a measurement that tells her if B holds for some B ∈ F with

P (B) ∈ (0, 1). If she found out that B is true, her assessment of the probability of A ∈ F would be P (A |B ).

If she found that B is false, she would evaluate the probability of A as P
(
A |BC )

. Thus, from our point of

view, her description of the probability of A is given by the random variable

XA(ω) =

{
P (A |B ) , ω ∈ B

P
(
A |BC )

, ω /∈ B
.

This is ultimately the kind of idea we are trying to capture with conditional expectation.

The typical development in elementary treatments of probability is to apply the de�nition of P (A |B ) to

the events {X = x} and {Y = y} for discrete random variables X, Y in order to de�ne the conditional

mass function of X given that Y = y as pX(x |Y = y ) =
pX,Y (x,y)

pY (y) . One then extrapolates to absolutely

continuous X and Y by replacing mass functions with densities (which is problematic in that it treats pdfs

as probabilities and raises issues concerning conditioning on null events). Finally, conditional expectation is

de�ned in terms of integrating against the conditional pmfs/pdfs.

In what follows, we will need a more sophisticated theory of conditioning that avoids some of the pitfalls,

paradoxes, and limitations of the framework sketched out above. Rather than try to arrive at the proper

de�nition by way of more familiar concepts, we will begin with a formal de�nition and then work through a

variety of examples and related results in order to provide motivation, build intuition, and make connections

with ideas from elementary probability.

De�nition. Let (Ω,F , P ) be a probability space, X : (Ω,F) → (R,B) a random variable with E |X| < ∞,

and G ⊆ F a sub-σ-algebra. We de�ne E[X |G ], the conditional expectation of X given G, to be any random

variable Y satisfying

(i) Y ∈ G (i.e. Y is measurable with respect to G)
(ii)

∫
A
Y dP =

∫
A
X dP for all A ∈ G

If Y satis�es (i) and (ii), we say that Y is a version of E[X |G ].
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Our most immediate order of business is to show that this de�nition makes good mathematical sense by

proving existence and uniqueness theorems.

To streamline this task, we �rst take a moment to establish integrability for random variables that �t the

de�nition so we may manipulate various quantities of interest with impunity.

Lemma 11.1. If Y satis�es conditions (i) and (ii) in the de�nition of E[X |G ], then it is integrable.

Proof. Letting A = {Y ≥ 0} ∈ G, condition (ii) implies∫
A

Y dP =

∫
A

X dP ≤
∫
A

|X| dP,∫
AC

(−Y ) dP = −
∫
AC

Y dP = −
∫
AC

X dP =

∫
AC

(−X) dP ≤
∫
AC

|X| dP.

It follows that

E |Y | =
∫
A

Y dP +

∫
AC

(−Y ) dP ≤
∫
A

|X| dP +

∫
AC

|X| dP = E |X| < ∞. □

The following existence proof gives an interpretation of conditional expectation in terms of Radon-Nikodym

derivatives. (Recall from Theorem 11.25 that if µ and ν are σ-�nite measures on (S,S) with ν ≪ µ, then

there is a measurable function f : S → R such that ν(A) =
∫
A
f dµ for all A ∈ S. f = dν

dµ is called the

Radon-Nikodym derivative of ν with respect to µ.)

Theorem 11.2. Let (Ω,F , P ) be a probability space, X : (Ω,F) → (R,B) a random variable with E |X| < ∞,

and G ⊆ F a sub-σ-algebra. There exists a random variable Y satisfying

(i) Y ∈ G
(ii)

∫
A
Y dP =

∫
A
X dP for all A ∈ G

Proof. First suppose that X ≥ 0. De�ne ν(A) =
∫
A
XdP for A ∈ G. Then P |G and ν are �nite measures on

(Ω,G). (That ν is countably additive is an easy application of the DCT.) Moreover, ν is clearly absolutely

continuous with respect to P . The Radon-Nikodym theorem therefore implies that there is a function dν
dP ∈ G

such that ∫
A

X dP = ν(A) =

∫
A

dν

dP
dP.

It follows that Y = dν
dP is a version of E[X |G ].

For general X, write X = X+−X− and let Y1 = E [X+ |G ], Y2 = E [X− |G ]. Then Y = Y1−Y2 is integrable

and G-measurable, so for all A ∈ G,∫
A

Y dP =

∫
A

Y1 dP −
∫
A

Y2 dP =

∫
A

X+ dP −
∫
A

X− dP =

∫
A

X dP. □

Theorem 11.3. Y is unique up to null sets.

Proof. Suppose that Y ′ is also a version of E[X |G ].

Condition (ii) implies that ∫
A

Y ′ dP =

∫
A

X dP =

∫
A

Y dP

for all A ∈ G.
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By condition (i), the event Aε = {Y − Y ′ ≥ ε} is in G for all ε > 0, hence

0 =

∫
Aε

Y dP −
∫
Aε

Y ′ dP =

∫
Aε

(Y − Y ′) dP ≥ εP (Y − Y ′ ≥ ε) .

It follows that Y ≤ Y ′ a.s. Interchanging the roles of Y and Y ′ in the preceding argument shows that Y ′ ≤ Y

a.s. as well, and the proof is complete. □

Proposition 11.4. If Y is a version of E[X |G ] and Y ′ ∈ G with Y = Y ′ a.s., then Y ′ is also a version of

E[X|G].

Proof. Since Y and Y ′ are G-measurable, E = {ω : Y (ω) ̸= Y ′(ω)} ∈ G. Since P (E) = 0, we see that for

any B ∈ G, ∫
B

X dP =

∫
B

Y dP =

∫
B∩E

Y dP +

∫
B\E

Y dP =

∫
B\E

Y dP

=

∫
B\E

Y ′ dP =

∫
B\E

Y ′ dP +

∫
B∩E

Y ′ dP =

∫
B

Y ′ dP. □

Lemma 11.1, Theorem 11.3, and Proposition 11.4 combine to tell us that conditional expectation is unique

as an element of L1(Ω,G, P ). Just as elements of Lp spaces are really equivalence classes of functions (rather

than speci�c functions) in classical analysis, conditional expectations are equivalence classes of random

variables. Here versions play the role of speci�c functions.

Often we will omit the �almost sure� quali�cation when speaking of relations between conditional expecta-

tions, but it is important to keep this issue in mind.

In light of Proposition 11.4, we can often work with convenient versions of E[X |G ] when we need to make

use of pointwise results.

Examples

Intuitively, sub-σ-algebras represent (potentially available) information�for each A ∈ G we can ask whether

or not A has occurred. From this perspective, we can think of E[X |G ] as giving the `best guess' for the

value of X given the information in G. The following examples are intended to clarify this view.

Example 11.5. If X ∈ G, then our heuristic suggests that E[X |G ] = X since if we know X, then our best

guess is X itself. This clearly ful�lls the de�nition as X always satis�es condition (ii) and condition (i) is

met by assumption.

Since constants are measurable with respect to any σ-algebra, taking X = c shows that E[c |G ] = c.

Example 11.6. At the other extreme, suppose that X is independent of G�that is, for all A ∈ G, B ∈ B,
{X ∈ B} and A are independent events. In this case, G tells us nothing about X, so our best guess is E[X].

As a constant, E[X] automatically satis�es condition (i).

To see that (ii) holds as well, note that for any A ∈ G,∫
A

E[X] dP = E[X]P (A) = E[X]E[1A] = E[X1A] =

∫
A

X dP

by independence.

In particular, ordinary expectation corresponds to conditional expectation w.r.t. G = {Ω, ∅}.
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Example 11.7. We now expand upon our introductory example: Suppose that Ω1,Ω2, ... is a countable

partition of Ω into disjoint measurable sets, each having positive probability (e.g. B and BC). Let G =

σ(Ω1,Ω2, ...). We claim that E[X |G ] = P (Ωi)
−1E[X; Ωi] on Ωi. The interpretation is that G tells us which

Ωi contains the outcome, and given that information, our best guess for X is its average over Ωi.

To verify our claim, note that

E[X |G ](ω) =
∑
i

E[X; Ωi]

P (Ωi)
1Ωi(ω)

is G-measurable since each Ωi belongs to G. Also, since each A ∈ G is a countable disjoint union of the Ωi's,

it su�ces to check condition (ii) on the elements of the partition. But this is trivial as∫
Ωi

P (Ωi)
−1E[X; Ωi] dP = E[X; Ωi] =

∫
Ωi

X dP.

If we make the obvious de�nition P (A |H ) = E[1A |H ], then the above says that

P (A |G ) = P (Ωi)
−1

∫
Ωi

1A dP =
P (A ∩ Ωi)

P (Ωi)
on Ωi.

Example 11.8. Conditioning on a random variable can be seen as a special case of our de�nition by taking

E[X |Y ] = E[X |σ(Y ) ]. To see how this compares with the de�nition given in undergraduate probability,

suppose that X and Y are discrete with joint pmf pX,Y and marginals pX , pY . Then σ(Y ) is generated by

the countable partition {Y = y}y∈Range(Y ), so the previous example shows that if E |X| < ∞, then

E[X|Y ] = P (Y = y)−1E[X; {Y = y}] = 1

P (Y = y)

∑
x

xP (X = x, Y = y) =
∑
x

x
pX,Y (x, y)

pY (y)

on {Y = y}.

Example 11.9. Similarly, suppose that X and Y are jointly absolutely continuous with joint density fX,Y

and marginals fX , fY . Suppose for simplicity that fY (y) > 0 for all y ∈ R. In this case, if E |g(X)| < ∞,

then E[g(X) |Y ] = h(Y ) where

h(y) =

∫
g(x)

fX,Y (x, y)

fY (y)
dx.

The Doob-Dynkin lemma shows that E[g(X) |Y ] ∈ σ(Y ). To see that the second criterion is satis�ed, recall

that every A ∈ σ(Y ) is of the form A = {Y ∈ B} for some B ∈ B, and a change of variables gives

∫
{Y ∈B}

h(Y ) dP =

∫
B

h(y)fY (y) dy =

∫
1B(y)

(∫
g(x)

fX,Y (x, y)

fY (y)
dx

)
fY (y) dy

=

∫ ∫
g(x)1B(y)fX,Y (x, y) dxdy = E[g(X)1B(Y )] =

∫
{Y ∈B}

g(X) dP.

Note that the condition fY > 0 is actually unnecessary since the above proof only needs h to satisfy

h(y)fY (y) =

∫
g(x)fX,Y (x, y) dx,

so h can take on any value at those y with fY (y) = 0. (Since fY (y) =
∫
fX,Y (x, y) dx and fX,Y ≥ 0, the

right-hand side of the above equation will also be 0 at such y.)
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Example 11.10. Suppose that X and Y are independent and φ satis�es E |φ(X,Y )| < ∞. Then

E[φ(X,Y ) |X ] = g(X)

where g(x) = E[φ(x, Y )].

As in the previous example, condition (i) is satis�ed by Doob-Dynkin, and condition (ii) can be veri�ed by

letting µ and ν denote the distributions of X and Y , respectively, and computing∫
{X∈B}

g(X) dP =

∫
B

g(x) dµ(x) =

∫
1B(x)

(∫
φ(x, y) dν(y)

)
dµ(x)

=

∫ ∫
1B(x)φ(x, y) d(µ× ν)(x, y) =

∫
1B(X)φ(X,Y ) dP =

∫
{X∈B}

φ(X,Y ) dP.

Properties

Many of the properties of ordinary expectation carry over to conditional expectation as they are ultimately

facts about integrals.

Proposition 11.11 (Linearity). E [aX + Y |G ] = aE [X |G ] + E [Y |G ]

Proof. Sums and constant multiples of G-measurable functions are G-measurable, and for any A ∈ G∫
A

(aE [X |G ] + E [Y |G ]) dP = a

∫
A

E [X |G ] dP +

∫
A

E [Y |G ] dP

= a

∫
A

X dP +

∫
A

Y dP =

∫
A

(aX + Y ) dP. □

Proposition 11.12 (Monotonicity). If X ≤ Y , then E[X |G ] ≤ E[Y |G ].

Proof. By assumption, we have∫
A

E[X |G ] dP =

∫
A

X dP ≤
∫
A

Y dP =

∫
A

E[Y |G ] dP

for all A ∈ G. For any ε > 0, Aε = {ω : E[X |G ]− E[Y |G ] ≥ ε} ∈ G, so

εP (Aε) ≤
∫
Aε

(E[X |G ]− E[Y |G ]) dP =

∫
Aε

E[X |G ] dP −
∫
Aε

E[Y |G ] dP ≤ 0.

It follows that E[X |G ] ≤ E[Y |G ] a.s. □

Proposition 11.13 (Monotone Convergence). If Xn ≥ 0 and Xn ↗ X, then E[Xn |G ] ↗ E[X |G ].

Proof. By monotonicity, 0 ≤ E[Xn |G ] ≤ E[Xn+1 |G ] ≤ E[X |G ] for all n. (The inequalities are almost

sure, but we can work with versions of the conditional expectations where they hold pointwise.) Since

bounded nondecreasing sequences of reals converge to their limit superior, there is a random variable Y with

E[Xn |G ] ↗ Y .

Moreover, Y ∈ G as it is the limit of G-measurable functions.
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Finally, applying the ordinary MCT to E[Xn |G ]1B ↗ Y 1B , invoking the de�nition of conditional expecta-

tion, and then applying the MCT to Xn1B ↗ X1B shows that∫
B

Y dP = lim
n→∞

∫
B

E[Xn |G ] dP = lim
n→∞

∫
B

Xn dP =

∫
B

X dP

for all B ∈ G, hence Y is a version of E[X |G ]. □

Note that since we have established a conditional MCT, conditional versions of Fatou and dominated con-

vergence follow from the usual arguments.

The �nal analogue we will consider is a conditional form of Jensen's inequality. It is fairly straightforward

to derive conditional variants of other familiar theorems using these examples as templates.

Proposition 11.14 (Jensen). If φ is convex and E |X| , E |φ(X)| < ∞, then

φ (E[X |G ]) ≤ E[φ(X) |G ].

Proof. When we proved the original Jensen inequality, we established that if φ is convex, then for every

c ∈ R, there is a linear function lc(x) = acx+ bc such that lc(c) = φ(c) and lc(x) ≤ φ(x) for all x ∈ R.

Let S = {(ar, br)}r∈Q . Then S is countable with ax+ b ≤ φ(x) for all x ∈ R, (a, b) ∈ S. Moreover, since Q
is dense in R and convex functions are continuous, we have φ(x) = sup

(a,b)∈S

ax+ b for all x ∈ R.

Monotonicity and linearity imply that

E[φ(X) |G ] ≥ E[aX + b |G ] = aE[X |G ] + b a.s.

whenever (a, b) ∈ S.

As S is countable, the event A = {E[φ(X) |G ] ≥ aE[X |G ] + b for all (a, b) ∈ S} has full probability.

Thus with probability one, we have

E[φ(X) |G ] ≥ sup
(a,b)∈S

aE[X |G ] + b = φ (E[X |G ]) . □

One use for conditional expectation is as an intermediary for computing ordinary expectations. This is

justi�ed by the law of total expectation:

Proposition 11.15. E [E[X |G ]] = E[X].

Proof. Taking A = Ω in the de�nition of E[X |G ] yields

E[X] =

∫
Ω

X dP =

∫
Ω

E[X |G ] dP = E [E[X |G ]] . □

As an example of the utility of the preceding observation, we prove

Proposition 11.16. Conditional expectation is a contraction in Lp, p ≥ 1.

Proof. Since φ(x) = |x|p is convex, Proposition 11.14 implies that |E[X |G ]|p ≤ E [|X|p |G ].

Taking expectations and appealing to Proposition 11.15 gives

E [|E[X |G ]|p] ≤ E [E [|X|p |G ]] = E [|X|p] . □
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Proposition 11.15 is actually a special case of the `tower property' of conditional expectation.

This result is one of the more useful theorems about conditional expectation and is often summarized as

�The smaller σ-algebra always wins.�

Theorem 11.17. If G1 ⊆ G2, then

E [E[X |G1 ] |G2 ] = E [E[X |G2 ] |G1 ] = E[X |G1 ].

Proof. Since E[X |G1 ] ∈ G1 ⊆ G2, Example 11.5 shows that E [E[X |G1 ] |G2 ] = E[X |G1 ].

To see that E [E[X |G2 ] |G1 ] = E[X |G1 ], we observe that E[X |G1 ] ∈ G1 and for any A ∈ G1 ⊆ G2,∫
A

E[X |G1 ] dP =

∫
A

X dP =

∫
A

E[X |G2 ] dP. □

Proposition 11.15 is the case G1 = {Ω, ∅}, G2 = G.

The second criterion in our de�nition of conditional expectation can be expressed in more probabilistic

language as E[Y 1A] = E[X1A] for all A ∈ G. One sometimes sees the alternative criterion E[Y Z] = E[XZ]

for all bounded Z ∈ G. The equivalence of the two conditions follows from the usual four-step procedure for

building general integrals from integrals of indicators. We will stick with our original de�nition as it is easier

to check.

The following theorem generalizes this alternative de�nition.

Theorem 11.18. If W ∈ G and E |X| , E |WX| < ∞, then E[WX |G ] = WE[X |G ].

Proof. WE[X |G ] ∈ G by assumption, so we need only check the second criterion.

We �rst suppose that W = 1B for some B ∈ G. Then for all A ∈ G,∫
A

WE[X |G ] dP =

∫
A

1BE[X |G ] dP =

∫
A∩B

E[X |G ] dP

=

∫
A∩B

X dP =

∫
A

1BX dP =

∫
A

WX dP.

By linearity, we see that the condition
∫
A
WE[X |G ] dP =

∫
A
WX dP also holds whenW is a simple function.

Now if W,X ≥ 0, we can take a sequence of simple functions Wn ↗ W and use the MCT to conclude that

∫
A

WE[X |G ] dP = lim
n→∞

∫
A

WnE[X |G ] dP

= lim
n→∞

∫
A

WnX dP =

∫
A

WX dP.

The general result follows by splitting W and X into positive and negative parts. □

Our last theorem about conditional expectation gives a geometric interpretation for square integrable X.

Namely, noting that L2(F) = {Y ∈ F : E[Y 2] < ∞} is a Hilbert space and L2(G) is a closed subspace of

L2(F), we will show that if X ∈ L2(F), then E[X |G ] is the orthogonal projection of X onto L2(G).

Theorem 11.19. If E[X2] < ∞, then E[X |G ] minimizes the mean square error E[(X − Y )2] amongst all

Y ∈ G.
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Proof. To begin, we note that if Z ∈ L2(G), then E |ZX| < ∞ by the Cauchy-Schwarz inequality, so Theorem

11.18 implies ZE[X |G ] = E[ZX |G ].

Taking expected values gives

E [ZE[X |G ]] = E [E[ZX |G ]] = E[ZX],

showing that

E [Z (X − E[X |G ])] = E[ZX]− E [ZE[X |G ]] = 0

for Z ∈ L2(G).
Thus for any Y ∈ L2(G), if we set Z = E[X |G ]− Y , then we have

E
[
(X − Y )2

]
= E

[
((X − E[X |G ]) + Z)

2
]

= E
[
(X − E[X |G ])

2
]
+ 2E [Z (X − E[X |G ])] + E[Z2]

= E
[
(X − E[X |G ])

2
]
+ E[Z2].

(Proposition 11.16 ensures E[X |G ] ∈ L2(G), so Z = E[X |G ]− Y ∈ L2(G) as well.)
It follows that E

[
(X − Y )2

]
is minimized over L2(G) when E[X |G ]− Y = Z = 0.

To see that E[X |G ] minimizes the MSE over L0(G), we make use of the inequality

(a+ b)2 ≤ (a+ b)2 + (a− b)2 = 2a2 + 2b2.

If Y ∈ G is such that E[(X − Y )2] = ∞, then it certainly doesn't minimize the MSE since E[X |G ] ∈ L2(G)
with

E
[
(X − E[X |G ])

2
]
≤ 2E[X2] + 2E

[
E[X |G ]2

]
< ∞,

and if E[(X − Y )2] < ∞, then

E[Y 2] = E[((Y −X) +X)
2
] ≤ 2E[(X − Y )2] + 2E[X2] < ∞. □

Remark. In some treatments of conditional expectation, the Radon-Nikodym approach is bypassed entirely

by �rst de�ning E[X |G ] for X ∈ L2(F) in terms of projection onto L2(G), and then extending the de�nition

to X ∈ L1(G) using approximating sequences of square integrable random variables. An upshot of this

strategy is that one can then prove the Radon-Nikodym theorem using martingales!

Example 11.20. De�ne the conditional variance of X given G as

Var(X |G ) = E
[
(X − E[X |G ])

2 |G
]
= E[X2 |G ]− E[X |G ]2.

Adding

E [Var(X |G )] = E
[
E[X2 |G ]

]
− E

[
E[X |G ]2

]
= E[X2]− E

[
E[X |G ]2

]
to

Var (E[X |G ]) = E
[
(E[X |G ]− E[X])

2
]

= E
[
E[X |G ]2

]
− 2E[X]E [E[X |G ]] + E[X]2

= E
[
E[X |G ]2

]
− E[X]2
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yields the law of total variance

Var(X) = E[X2]− E[X]2 = E [Var(X |G )] +Var (E[X |G ]) .

The idea is that X ∈ L2(F) can be decomposed into its projection onto L2(G) and the mean-zero error term

W = X − E[X |G ]. The variability in X that is not explained by G comes from W , which has variance

Var(W ) = E
[
(X − E[X |G ])

2
]
= E

[
E
[
(X − E[X |G ])

2 |G
]]

= E [Var(X |G )] .
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Appendix

For the sake of completeness, we collect here some proofs of results that were left as facts to be accepted

in the main body of these notes. They appear in the order they were mentioned, and so are sometimes

anachronistic in terms of the concepts upon which they depend.

Regularity

Throughout this subsection, suppose that µ is a complete measure on (R,M) arising from a distribution

function F . That is, for all E ∈ M,

µ(E) = inf
{ ∞∑

j=1

[F (bj)− F (aj)] : E ⊆
∞⋃
j=1

(aj , bj ]
}

= inf
{ ∞∑

j=1

µ
(
(aj , bj ]

)
: E ⊆

∞⋃
i=1

(aj , bj ]
}
.

Lemma 11.21. For any E ∈ M, µ(E) = inf
{∑∞

j=1 µ
(
(aj , bj)

)
: E ⊆

⋃∞
i=1(aj , bj)

}
.

Proof. Let ν(E) denote the in�mum appearing in the statement of the lemma. If E ⊆
⋃∞

j=1(aj , bj), set

ℓj = bj − aj and let Ij,k =
(
bj − ℓj

2k−1 , bj − ℓj
2k

)
. Then (aj , bj) =

⊔∞
k=1 Ij,k, so E ⊆

⋃
j,k∈N Ij,k and∑∞

j=1 µ
(
(aj , bj)

)
=
∑

j,k∈N µ(Ij,k) ≥ µ(E), hence ν(E) ≥ µ(E).

Conversely, given ε > 0, there exist
{
(aj , bj ]

}∞
j=1

with E ⊆
⋃∞

j=1(aj , bj ] and µ(E) ≥
∑∞

j=1 µ
(
(aj , bj ]

)
− ε.

Also, for each j, there exists δj > 0 such that F (bj + δj)− F (bj) <
ε
2j . Thus E ⊆

⋃∞
j=1(aj , bj + δj) and

∞∑
j=1

µ
(
(aj , bj + δj)

)
≤

∞∑
j=1

µ
(
(aj , bj ]

)
+ ε ≤ µ(E) + 2ε

so that ν(E) ≤ µ(E) as well. □

Theorem 11.22. For all E ∈ M,

µ(E) = inf
{
µ(U) : U is open and E ⊆ U

}
= sup

{
µ(K) : K is compact and K ⊆ E

}
.

Proof. If U is open and E ⊆ U , then µ(U) ≥ µ(E). On the other hand, Lemma 2.3 ensures that we can

write U =
⋃∞

j=1(aj , bj) so that µ(U) ≤
∑∞

j=1 µ
(
(aj , bj)

)
. Invoking Lemma 11.21 establishes the �rst claim.

For the second, suppose �rst that E is bounded. If E is also closed, then its compact so the second claim is

immediate. Otherwise, given ε > 0, we can choose an open set U ⊇ E \ E such that µ(U) ≤ µ(E \ E) + ε.

Then K = E \ U is a compact subset of E with E \K = E ∩ (E ∩ UC)C = E ∩ (E
C ∪ U) = E ∩ U , hence

µ(K) = µ(E)− µ(E ∩ U)

= µ(E)− [µ(U)− µ(U \ E)]

≥ µ(E)− µ(U) + µ(E \ E) ≥ µ(E)− ε.

Finally, if E is unbounded, write Ej = E ∩ (j, j + 1] for j ∈ Z. The preceding ensures that there is a

compact Kj ⊆ Ej with µ(Kj) ≥ µ(Ej) − ε
2|j|

. Then Hn =
⋃n

j=−n Kj is a compact subset of E with

µ(Hn) ≥
∑n

j=−n µ(Ej)− 3ε = µ
(⋃n

j=−n Ej

)
− 3ε. Since µ(E) = limn→∞ µ

(⋃n
j=−n Ej

)
, there is an N ∈ N

with µ
(⋃N

j=−N Ej

)
≥ µ(E)− ε, hence µ(HN ) ≥ µ(E)− 4ε. □
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In light of the preceding, we see that if µ is a probability distribution on R, then for any E ∈ B, ε > 0,

there is an open set U ⊇ E with 0 ≤ µ(U) − µ(B) < ε/2. Since U is a countable union of disjoint open

intervals, limn→∞
∑n

k=1 µ
(
(ak, bk)

)
= µ(U) ≤ 1, so there is an N ∈ N with µ(U) ≤

∑N
k=1 µ

(
(ak, bk)

)
+ ε/2.

Consequently,
∣∣∣µ(B)−

∑N
k=1 µ

(
(ak, bk)

)∣∣∣ < ε. Thus every Borel set is almost a �nite union of open intervals!

Lebesgue-Radon-Nikodym

Our �rst step in establishing the Lebesgue-Radon-Nikodym theorem amounts to a derivation of the Hahn

decomposition of a �nite signed measure. [One can build up a theory of C-valued measures by considering

real and imaginary parts and then positive and negative parts. As we have no need for such generality in

this course, we'll just state our results in terms of ordinary (positive) measures.]

Proposition 11.23. Suppose µ and ν are �nite measures on (S,G). Then there is a set P ∈ G such that

µ(A) ≥ ν(A) if A ⊆ P and ν(B) ≥ µ(B) if B ⊆ PC .

Proof. Write η = µ − ν and say that F ∈ G is positive for η if η(B) ≥ 0 for all B ⊆ F . Our aim is thus to

�nd a set P ∈ G such that P is positive for η and PC is positive for −η. (In this case, we say that (P, PC)

is a Hahn decomposition for η.)

We �rst claim that for any A ∈ G, ε > 0, there is a B ⊆ A such that η(B) ≥ η(A) and η(E) > −ε for

all E ⊆ B. If not, there is an E1 ⊆ A such that η(E1) ≤ −ε. Since η(A \ E1) = η(A) − η(E1) ≥ η(A),

there is an E2 ∈ A \ E1 with η(E2) < −ε. Continuing thusly gives a sequence {En} of disjoint sets with

µ(En) − ν(En) = η(En) < −ε for all n. But then for every N ∈ N, EN =
⊔N

n=1 En has the property that

µ(EN )− ν(EN ) =
∑N

n=1[µ(En)− ν(En)] < −Nε, hence ν(Ω) ≥ ν(EN ) > µ(EN ) +Nε > Nε, contradicting

the assumption that ν is �nite.

Next, given A ∈ G, let A1 = A and inductively pick An ⊆ An−1 such that η(An) ≥ η(An−1) and ν(B) > − 1
n

for all B ⊆ An. Let F =
⋂∞

n=1 An. Then F is positive for η and continuity from above implies η(F ) =

limn→∞ η(An) ≥ η(A).

Now let α = sup {η(A) : A ∈ G}. Then the preceding ensures we can choose a sequence {Pn} in G such

that each Pn is positive for η and limn→∞ η(Pn) = α. Continuity from below shows that P =
⋃∞

n=1 Pn is

positive with η(P ) = α. Moreover, η(B) ≤ 0 for all B ⊆ PC since otherwise we would have η(P ∪ B) =

η(P ) + η(B) > α.

Finally, we observe that if P ′ is any other set having this property, then P ′ \ P ⊆ P ′ and P ′ \ P ⊆ PC , so

0 ≤ η(P ′ \ P ) ≤ 0, and likewise for P \ P ′. It follows that µ(P∆P ′) − ν(P∆P ′) = η(P∆P ′) = 0, so this

decomposition is unique up to sets on which µ and ν agree. □

Proposition 11.23 gives us the following useful characterization of mutual singularity.

Lemma 11.24. Suppose µ and ν are �nite measures on (S,G). Either µ ⊥ ν or there exist ε > 0, E ∈ G
with µ(E) > 0 and ν(B) ≥ εµ(B) for all B ⊆ E.

Proof. For each n ∈ N let (Pn, P
C
n ) be a Hahn decomposition for ηn = ν − n−1µ. Set P =

⋃∞
n=1 Pn.

Then PC =
⋂∞

n=1 P
C
n satis�es ν(B) − n−1µ(B) ≤ 0 and thus 0 ≤ ν(B) ≤ n−1µ(B) for all B ⊆ PC ,

n ∈ N. In particular, ν(PC) = 0. If µ(P ) = 0, then µ ⊥ ν. Otherwise, µ(Pn) > 0 for some n ∈ N and

ν(B)− n−1µ(B) ≥ 0, hence ν(B) ≥ n−1µ(B) for all B ⊆ Pn. □
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At this point, we observe that if µ is a �nite measure on (S,G) and f : S → [0,∞) is integrable, then

ν(E) =
∫
E
f dµ :=

∫
f1E dµ is also a �nite measure. Indeed, if E =

⊔∞
k=1 Ek, writing Fn =

⊔n
k=1 Ek, we

have that Fn ↗ E, so f1Fn ↗ f1E pointwise. Monotone convergence and linearity then give

ν(E) =

∫
f1E dµ =

∫
lim
n→∞

f1Fn dµ = lim
n→∞

∫
f1Fn dµ

= lim
n→∞

∫
f

n∑
k=1

1Ek
dµ = lim

n→∞

n∑
k=1

∫
f1Ek

dµ =

∞∑
k=1

ν(Ek).

Moreover, if µ(E) = 0, then f1E = 0 µ-a.s., hence ν(E) =
∫
f1E dµ = 0�that is, ν ≪ µ.

The Radon-Nikodym theorem asserts that the converse is true�if ν ≪ µ, then dν = f dµ in the sense that

ν(E) =
∫
E
f dµ for all E ∈ F . We call f = dν

dµ the Radon-Nikodym derivative of ν with respect to µ.

Additionally, the Lebesgue decomposition theorem says that we can uniquely express ν as a sum of measures

that are absolutely continuous/singular, with respect to µ. The following theorem combines these statements.

Theorem 11.25. If µ and ν are �nite measures on (S,G), then there exist unique measures ρ, λ with ρ ≪ µ,

λ ⊥ µ, and ν = ρ+ λ. Moreover, there is an integrable φ : S → [0,∞) with ρ(E) =
∫
E
φdµ for all E ∈ G.

Proof. De�ne F =
{
f : S → [0,∞) :

∫
E
f du ≤ ν(E) for all E ∈ G

}
. F is nonempty since it contains

f ≡ 0. Also, if f, g ∈ F , then so is h = max{f, g}: If A =
{
x ∈ S : f(x) > g(x)

}
, then h = f1A + g1AC

satis�es
∫
E
h dµ =

∫
E∩A

f dµ+
∫
E∩AC g dµ ≤ ν(E ∩A) + ν(E ∩AC) = ν(E).

Let s = sup
{ ∫

f dµ : f ∈ F
}
, so that s ≤ ν(S), and choose a sequence {fn} in F with

∫
fn dµ → s. De�ne

gn = max{f1, . . . , fn} and φ = supn fn. Then gn ∈ F , gn increases pointwise to φ, and
∫
gn dµ ≥

∫
fn dµ

for all n. It follows that φ ∈ F and, by monotone convergence,
∫
φdµ = limn→∞

∫
gn dµ = s.

Setting ρ(E) =
∫
E
φdµ, we have that ρ ≪ µ and ρ(E) ≤ ν(E) for all E ∈ G. This shows that λ := ν − ρ is

a (positive) measure on (S,G). Moreover, it must be the case that λ ⊥ µ because otherwise there would be

some F ∈ G, ε > 0 with µ(F ) > 0 and ν(B)− ρ(B) = λ(B) ≥ εµ(B) for all B ⊆ F . But then f = φ+ ε1F

satis�es
∫
E
f dµ = ρ(E ∩FC) + [ρ(E ∩F ) + εµ(F ∩E)] ≤ ν(E ∩FC) + ν(E ∩F ) = ν(E), hence f ∈ F , and∫

f dµ = s+ εµ(F ) > s, a contradiction.

For uniqueness, suppose ν = ρ′ + λ′ is another such decomposition. Then there are sets E1, E2 ∈ G with

µ(E1) = µ(E2) = 0 and λ(EC
1 ) = λ′(EC

2 ) = 0. Writing E = E1 ∪ E2, so that EC = EC
1 ∩ EC

2 , we see that

µ(E) = 0 (hence ρ(E) = ρ′(E) = 0) and λ(EC) = λ′(EC) = 0. It follows that for any A ∈ G, λ(A) =

λ(A ∩ E) = ν(A ∩ E) = λ′(A ∩ E) = λ′(A) and ρ(A) = ρ(A ∩ EC) = ν(A ∩ EC) = ρ′(A ∩ EC) = ρ′(A). □

(S,G, µ) is σ-�nite if S is a countable union of sets having �nite µ-measure; Lebesgue measure on R is such

an example. If µ and ν are σ-�nite measures on (S,G), we can write S =
⊔∞

j=1 Sj with µ(Sj), ν(Sj) < ∞
for all j. Applying the preceding to the restrictions of µ and ν to each Sj and then recombining the pieces

shows that the �niteness assumption can be weakened to σ-�niteness.

Riemann-Lebesgue

Suppose f is an R-valued function de�ned on a bounded interval [a, b]. Let P = {x0, x1, . . . , xn} be a

partition of [a, b] (so a = x0 < x1 < · · · < xn = b), denote its mesh by |P| = max1≤k≤n(xk − xk−1), and let

T = {t1, . . . , tn} be a sequence of tags for P (so tk ∈ [xk−1, xk]). The associated Riemann sum is given by

R(f,P, T ) =

n∑
k=1

f(tk)(xk − xk−1).
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We say that f is Riemann integrable over [a, b] if there exists I ∈ R such that for every ε > 0, there is a

δ > 0 such that any tagged partition (P, T ) with |P| < δ satis�es |R(f,P, T )− I| < ε. In this case, we write

I =
∫ b

a
f(t) dt, the Riemann integral of f over [a, b].

Alternatively, given a partition P of [a, b], de�ne Mj = supt∈[xj−1,xj ] f(t) and mj = inft∈[xj−1,xj ] f(t). De�ne

the upper and lower Darboux sums by

U(f,P) =

n∑
j=1

Mj(xj − xj−1), V(f,P) =

n∑
j=1

mj(xj − xj−1).

Necessarily V(f,P) ≤ R(f,P, T ) ≤ U(f,P) for all (P, T ). Moreover, if P ′ re�nes P in the sense that

P ⊆ P ′, then one has V(f,P) ≤ V(f,P ′) ≤ U(f,P ′) ≤ U(f,P). It can be shown that Riemann integrability

is equivalent to supP V(f,P) = infP U(f,P), in which case the common value is
∫ b

a
f(t) dt.

Theorem 11.26. Let f be a bounded function on the �nite interval [a, b] and let m denote Lebesgue measure.

(1) If f is Riemann integrable, then it's Lebesgue measurable (and thus integrable since it's bounded), and∫ b

a
f(x) dx =

∫
[a,b]

f dm.

(2) f is Riemann integrable i� m ({x ∈ [a, b] : f is discontinuous at x}) = 0.

Proof. Suppose f is Riemann integrable. For each partition P = {x0, . . . , xn} of [a, b], de�ne gP =∑n
j=1 mj1[xj−1,xj ] and GP =

∑n
k=1 Mj1[xj−1,xj ] where mj = inft∈[xj−1,xj ] f(t) and Mj = supt∈[xj−1,xj ] f(t).

By assumption, there is a nested sequence of partitions P1 ⊆ P2 ⊆ · · · such that limk→∞ V(f,Pk) =

limk→∞ U(f,Pk) =
∫ b

a
f(t) dt. Let G = limk→∞ GPk

and g = limk→∞ gPk
. Then g ≤ f ≤ G, and

by dominated convergence,
∫
Gdm =

∫ b

a
f(t) dt =

∫
g dm. It follows that

∫
(G − g) dm = 0, so G = g

almost everywhere, hence f = G a.e. Since G is a limit of simple functions, f is measurable with∫
f dm =

∫
Gdm =

∫ b

a
f(x) dx.

To prove the second statement, de�ne H(x) = lim supy→x f(y) and h(x) = lim infy→x f(y). Note that f is

continuous at x i� H(x) = h(x). Also, using the notation from the �rst part, H = G and h = g on a set

of full measure, hence both are measurable/integrable with
∫
[a,b]

H dm =
∫
Gdm and

∫
[a,b]

h dm =
∫
g dm.

The result follows since f is integrable i�
∫
Gdm =

∫
g dm i� H − h ≥ 0 vanishes outside a null set. □

Product σ-�elds

De�nition. Given an indexed collection of measurable spaces {(Sα,Gα)}α∈A, the product σ-�eld,
⊗

α∈A Gα,

on S =
∏

α∈A Sα is generated by
{
π−1
α (Gα) : Gα ∈ Gα, α ∈ A

}
where πα : S → Sα is projection onto the α

coordinate.

The product σ-algebra is thus the smallest σ-algebra for which the projections are measurable. This is because

we want a function taking values in the product space to be measurable precisely when its components are.

Proposition 11.27. If A is countable, then
⊗

α∈A Gα is generated by the rectangles
{∏

α∈A Gα : Gα ∈ Gα

}
.

If, in addition, Gα is generated by Eα for every α ∈ A, then
⊗

α∈A Gα is generated by
{∏

α∈A Eα : Eα ∈ Eα
}
.

Proof. If Gα ∈ Gα, then π−1
α (Gα) =

∏
β∈A Gβ where Gβ = Sβ for all β ̸= α, hence

σ
({

π−1
α (Gα) : Gα ∈ Gα, α ∈ A

})
⊆ σ

({ ∏
α∈A

Gα : Gα ∈ Gα

})
.
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On the other hand,
∏

α∈A Gα =
⋂

α∈A π−1
α (Gα), so

σ
({ ∏

α∈A

Gα : Gα ∈ Gα

})
⊆ σ

({
π−1
α (Gα) : Gα ∈ Gα, α ∈ A

})
.

The second statement will follow from the above argument once we show that
⊗

α∈A Gα is generated by

F1 =
{
π−1
α (Eα) : Eα ∈ Eα, α ∈ A

}
. To this end, observe that F1 ⊆

{
π−1
α (Gα) : Gα ∈ Gα, α ∈ A

}
by

construction, so σ(F1) ⊆
⊗

α∈A Gα.

Conversely, arguing as in the proof of Theorem 4.2 shows that for each α ∈ A,
{
E ⊆ Sα : π−1

α (E) ∈ σ(F1)
}

is a σ-algebra containing Eα (and thus Gα), so π−1
α (E) ∈ σ(F1) for all E ∈ Gα, and we conclude that

σ
({

π−1
α (Gα) : Gα ∈ Gα, α ∈ A

})
⊆ σ(F1) as well. □

Proposition 11.28. If S1, . . . , Sn are separable metric spaces and S =
∏n

i=1 Si is equipped with the product

metric, then BX =
⊗n

i=1 BSi
.

Proof. By Proposition 11.27,
⊗n

i=1 BSi
is generated by

{
π−1
i (Ui) : Ui is open in Si, i ∈ [n]

}
. Since each

π−1
i (Ui) is open in S,

⊗n
i=1 BSi

⊆ BS .

For the reverse inclusion, suppose Di = {xi,k}∞k=1 is a countable dense set in Si for each i ∈ [n] and let

Ei =
{
Br(xi,k) : r ∈ Q+, k ∈ N

}
be the collection of balls of rational radii centered at the xi,k. For each

open U ⊆ S, x ∈ U , there exist xi,ki
∈ Di, i ∈ [n], and r ∈ Q+ such that x ∈

∏n
i=1 Br(xi,ki

) ⊆ U .

Accordingly, U can be written as a union of such products. As each Ei is countable, this union must be as

well, and we conclude that BS ⊆
⊗n

i=1 BSi
. □

Corollary 11.29. If E is any of the collections from Theorem 2.4, then Bd is generated, by the semialgebra

of rectangles R =
{
J1 × · · · × Jd : Jk ∈ E

}
.

Convex Functions

Lemma 11.30. If φ : R → R is convex, then for all x < y < z,

φ(y)− φ(x)

y − x
≤ φ(z)− φ(x)

z − x
≤ φ(z)− φ(y)

z − y
.

Proof. Writing λ = y−x
z−x ∈ (0, 1), we have y = λz + (1− λ)x, so it follows from convexity that

φ(y) ≤ λφ(z) + (1− λ)φ(x), and thus

φ(y)− φ(x) ≤ λ (φ(z)− φ(x)) =
y − x

z − x
(φ(z)− φ(x)) .

Dividing by y − x > 0 gives the �rst inequality.

Similarly, setting µ = z−y
z−x = 1− λ ∈ (0, 1), we have y = µx+ (1− µ)z, so φ(y) ≤ µφ(x) + (1− µ)φ(z), and

thus

φ(y)− φ(z) ≤ µ (φ(x)− φ(z)) =
z − y

z − x
(φ(x)− φ(z)) ,

hence
φ(z)− φ(y)

z − y
≥ φ(z)− φ(x)

z − x
. □
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Proof of Fact 7.3. For any h > 0, taking x = c − h, y = c, z = c + h in Lemma 11.30, it follows from the

outer inequality that that
φ(c)− φ(c− h)

h
≤ φ(c+ h)− φ(c)

h
.

Also, for any 0 < h1 < h2, we have c− h2 < c− h1 < c, so the second inequality in Lemma 11.30 shows that
φ(c)−φ(c−h2)

h2
≤ φ(c)−φ(c−h1)

h1
.

Similarly, since c < c + h1 < c + h2, the �rst inequality in Lemma 11.30 shows that φ(c+h2)−φ(c)
h2

≥
φ(c+h1)−φ(c)

h1
.

Consequently, the one-sided derivatives exist and satisfy

φ′
l(c) := lim

h→0+

φ(c)− φ(c− h)

h
≤ lim

h→0+

φ(c+ h)− φ(c)

h
:= φ′

r(c).

Now let a ∈ [φ′
l(c), φ

′
r(c)] and de�ne the linear function ℓ(x) = a(x− c) + φ(c). Clearly, ℓ(c) = φ(c).

To see that ℓ(x) ≤ φ(x) for all x ∈ R, note that if x < c, then x = c− k for some k > 0, so

ℓ(x)− φ(x) = a(x− c) + φ(c)− φ(c− k) = −k

(
a− φ(c)− φ(c− k)

k

)
≤ 0

since φ(c)−φ(c−k)
k ≤ φ′

l(c) ≤ a by monotonicity. The x > c case is similar. □

Fubini-Tonelli

Lemma 11.31. Suppose that (R,F , µ) and (S,G, ν) are probability spaces. For E ∈ F ⊗ G, x ∈ R, y ∈ S,

de�ne Ex =
{
y ∈ S : (x, y) ∈ E

}
, Ey =

{
x ∈ R : (x, y) ∈ E

}
. Then

(1) Ex ∈ G, Ey ∈ F for all x ∈ R, y ∈ S

(2) The maps x 7→ ν(Ex), y 7→ µ(Ey) are measurable functions on R and S, respectively,

(3) (µ× ν)(E) =
∫
R
ν(Ex) dµ(x) =

∫
S
µ(Ey) dν(y) for all E ∈ F ⊗ G.

Proof. Let L be the set of all E ∈ R× S for which the conclusions of the lemma obtain.

If A ∈ F ,B ∈ G, then (A×B)x = B for x ∈ A and (A×B)x = ∅ for x ∈ AC , so (A×B)x ∈ G for all x ∈ R

and ν
(
(A×B)x

)
= ν(B)1A(x) is a measurable function of x with

(µ× ν)(A×B) = µ(A)ν(B) = ν(B)

∫
R

1A(x) dµ(x) =

∫
R

ν
(
(A×B)x

)
dµ(x).

The analogous claims hold for the y-slices, so the π-system R =
{
A × B : A ∈ F , B ∈ G

}
, which contains

R× S and generates F ⊗ G, is contained in L.
If E,F ∈ L with E ⊆ F , then Ex ⊆ Fx and (F \ E)x = Fx \ Ex, so ν

(
(F \ E)x

)
= ν(Fx) − ν(Ex) is a

di�erence of measurable functions with

(µ× ν)(F \ E) = (µ× ν)(F )− (µ× ν)(E)

=

∫
R

ν(Fx) dµ(x)−
∫
R

ν(Ex) dµ(x)

=

∫
R

[ν(Fx)− ν(Ex)] dµ(x) =

∫
R

ν
(
(F \ E)x

)
dµ(x).

Repeating the above with y shows that L is closed under subset di�erences.
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Finally, if {Ek} ⊆ L with Ek ↗ E, then (Ek)x ↗ Ex, so ν
(
Ex

)
= limn→∞ ν

(
(Ek)x

)
is a limit of measurable

functions with

(µ× ν)(E) = lim
n→∞

(µ× ν)(Ek) = lim
n→∞

∫
R

ν
(
(Ek)x

)
dµ(x) =

∫
R

ν
(
Ex

)
dµ(x)

by monotone convergence. As the same holds for y, we see that L is a λ-system and the proof is complete. □

Proof of Fact 7.13. Given probability spaces (R,F , µ) and (S,G, ν), suppose �rst that f(x, y) = 1E
(
(x, y)

)
for some E ∈ F ⊗ G. Then Lemma 11.31 implies∫

R×S

f d(µ× ν) = (µ× ν)(E) =

∫
S

µ(Ey) dν(y) =

∫
S

(∫
R

1B(x, y) dµ(x)

)
dν(y)

=

∫
R

ν(Ex) dµ(x) =

∫
R

(∫
S

f(x, y) dν(y)

)
dµ(x).

This extends to simple functions by linearity, then nonnegative functions by monotone convergence. That

proves Tonelli's theorem and Fubini follows by considering positive and negative parts. □

Kolmogorov Extension

Proof of Fact 7.14. Let {µn}∞n=1 be a consistent sequence of probability measures, let S be the semialgebra

of cylinder sets, and de�ne P0 : S → [0, 1] by

P0

(
{ω ∈ RN : ωi ∈ (ai, bi], 1 ≤ i ≤ n}

)
= µn ((a1, b1]× · · · × (an, bn]) .

Next, let S be the algebra generated by S and de�ne P̃ : S → [0, 1] by P̃ (
⊔n

k=1 Sk) =
∑n

k=1 P0(Sk) for

S1, ..., Sn disjoint sets in S. It's easy to check that, P0 and thus P̃ is �nitely additive.

As S generates BN, it su�ces to show that P̃ is countably additive and thus a premeasure on S. We do so

by proving that if {Bn}∞n=1 is a sequence of sets in S with Bn ↘ ∅, then P̃ (Bn) ↘ 0.

Indeed if {Ai}∞i=1 is a countable collection of disjoint sets in S such that A =
⋃∞

i=1 Ai ∈ S, then for any n ∈ N,
Bn =

⋃∞
i=n Ai = A\

⋃n−1
i=1 Ai belongs to the algebra S, so �nite additivity gives P̃ (A) =

∑n−1
i=1 P̃ (Ai)+P̃ (Bn).

To further simplify our task, let Fn be the sub-σ-algebra of BN consisting of all sets of the form E =

E∗ × R× R× · · · with E∗ ∈ Bn. We'll use this asterisk notation throughout to denote the `Bn component'

of sets in Fn.

We begin by showing that we may assume without loss of generality that Bn ∈ Fn for all n.

To see this, note that Bn ∈ S implies that there is a j(n) ∈ N such that Bn ∈ Fk for all k ≥ j(n). Let

k(1) = j(1) and k(n) = k(n− 1) + j(n) for n ≥ 2. Then k(1) < k(2) < · · · and Bn ∈ Fk(n) for all n. De�ne

B̃i = RN for i < k(1) and B̃i = Bn for k(n) ≤ i < k(n + 1). Then B̃n ∈ Fn for all n and the collections

{Bn} and
{
B̃n

}
di�er only in that the latter possibly includes RN and repeats sets. The assertion follows

since B̃n ↘ ∅ if and only if Bn ↘ ∅ and P̃
(
B̃n

)
↘ 0 if and only if P̃ (Bn) ↘ 0.

Now suppose that P̃ (Bn) ≥ δ > 0 for all n. (Since P̃ is monotone and Bn ↘ ∅, this is equivalent to

P̃ (Bn) ̸̸→ 0.) We will derive a contradiction by approximating the B∗
n from within by compact sets and then

using a diagonal argument to obtain
⋂

n Bn ̸= ∅.
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Since Bn is nonempty and belongs to S ∩ Fn, we can write

Bn =

K(n)⋃
k=1

{ω : ωi ∈ (ai,k, bi,k], i = 1, ..., n} where −∞ ≤ ai,k < bi,k ≤ ∞.

By a continuity from below argument, we can �nd a set En ⊆ Bn of the form

En =

K(n)⋃
k=1

{
ω : ωi ∈ [ãi,k, b̃i,k], i = 1, ..., n

}
, −∞ < ãi,k < b̃i,k < ∞,

with µn (B
∗
n \ E∗

n) ≤ δ
2n+1 .

Let Fn =
⋂n

m=1 Em. Since Bn ⊆ Bm for any m ≤ n, we have

Bn \ Fn = Bn ∩

(
n⋃

m=1

EC
m

)
=

n⋃
m=1

(
Bn ∩ EC

m

)
⊆

n⋃
m=1

(
Bm ∩ EC

m

)
,

hence

µn(B
∗
n \ F ∗

n) ≤
n∑

m=1

µm(B∗
m \ E∗

m) ≤ δ

2
.

As µn(B
∗
n) = P̃ (Bn) ≥ δ, this means that µn(F

∗
n) ≥ δ

2 , hence F ∗
n is nonempty.

Moreover, E∗
n is a �nite union of closed and bounded rectangles, so

F ∗
n = E∗

n ∩ (E∗
n−1 × R) ∩ · · · ∩ (E1 × Rn−1)

is compact.

For each m ∈ N, choose some ωm ∈ Fm. As Fm ⊆ F1, ω
m
1 (the �rst coordinate of ωm) is in F ∗

1 .

By compactness, we can �nd a subsequence m(1, j) ≥ j such that ω
m(1,j)
1 converges to a limit θ1 ∈ F ∗

1 .

For m ≥ 2, Fm ⊆ F2, so (ωm
1 , ωm

2 ) ∈ F ∗
2 . Because F ∗

2 is compact, we can �nd a subsequence of {m(1, j)},
which we denote by m(2, j), such that ω

m(2,j)
2 converges to a limit θ2 with (θ1, θ2) ∈ F ∗

2 .

In general, we can �nd a subsequence m(n, j) of m(n− 1, j) such that ω
m(n,j)
n converges to θn with

(θ1, ..., θn) ∈ F ∗
n .

Finally, de�ne the sequence ω(i) = ωm(i,i). Then ω(i) is a subsequence of each ωm(i,j), so limi→∞ ω(i)k = θk

for all k. Since (θ1, ..., θn) ∈ F ∗
n for all n, θ = (θ1, θ2, ...) ∈ Fn for all n, hence

θ ∈
∞⋂

n=1

Fn ⊆
∞⋂

n=1

Bn,

a contradiction! □

Generalized WLLN

Theorem 11.32. For each n ∈ N, let Xn,1, ..., Xn,n be independent. Let {bn}∞n=1 be a sequence of positive

numbers with limn→∞ bn = ∞ and let X̃n,k = Xn,k1 {|Xn,k| ≤ bn}. Suppose that as n → ∞

(1)
∑n

k=1 P (|Xn,k| > bn) → 0

(2) b−2
n

∑n
k=1 E

[
X̃2

n,k

]
→ 0.

If we let Sn =
∑n

k=1 Xn,k and an =
∑n

k=1 E
[
X̃n,k

]
, then

Sn − an
bn

→p 0.
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Proof. Let S̃n =
∑n

k=1 X̃n,k. By partitioning the event
{∣∣∣Sn−an

bn

∣∣∣ > ε
}
according to whether or not Sn = S̃n,

we see that

P

(∣∣∣∣Sn − an
bn

∣∣∣∣ > ε

)
≤ P (Sn ̸= S̃n) + P

(∣∣∣∣∣ S̃n − an
bn

∣∣∣∣∣ > ε

)
.

To estimate the �rst term, we observe that

P (Sn ̸= S̃n) ≤ P

(
n⋃

k=1

{
Xn,k ̸= X̃n,k

})
≤

n∑
k=1

P
(
Xn,k ̸= X̃n,k

)
=

n∑
k=1

P (|Xn,k| > bn) → 0.

For the second, we use Chebychev's inequality, E
[
S̃n

]
= an, the independence of the X̃n,k's, and our second

assumption to obtain

P

(∣∣∣∣∣ S̃n − an
bn

∣∣∣∣∣ > ε

)
≤ ε−2E

( S̃n − an
bn

)2
 = ε−2b−2

n Var(S̃n)

= ε−2b−2
n

n∑
k=1

Var
[
X̃2

n,k

]
≤ ε−2

(
b−2
n

n∑
k=1

E
[
X̃2

n,k

])
→ 0. □

Theorem 11.32 was so easy to prove because we assumed exactly what we needed. Essentially, these are the

correct hypotheses for the weak law, but they are a little clunky so we usually talk about special cases that

take a nicer form.

To prove our weak law for i.i.d. sequences, we need the following simple generalization of Proposition 6.6.

Lemma 11.33 (Layer cake representation). If Y ≥ 0 and p > 0, then

E [Y p] =

∫ ∞

0

pyp−1P (Y > y) dy.

Proof. Tonelli's theorem gives∫ ∞

0

pyp−1P (Y > y) dy =

∫ ∞

0

pyp−1

(∫
Ω

1 {Y > y} dP
)
dy

=

∫
Ω

(∫ ∞

0

pyp−11 {y < Y } dy
)
dP

=

∫
Ω

(∫ Y

0

pyp−1 dy

)
dP =

∫
Ω

Y pdP = E [Y p] . □

We now have all the necessary ingredients for a

Proof of Fact 8.13. We will apply Theorem 11.32 with Xn,k = Xk and bn = n (hence an = nµn).

The �rst assumption is satis�ed since

n∑
k=1

P (|Xn,k| > n) = nP (|X1| > n) → 0.

For the second assumption, we have X̃n,k = Xk1 {|Xk| ≤ n}, so we must show that

1

n
E
[
X̃2

n,1

]
=

1

n2

n∑
k=1

E
[
X̃2

n,k

]
→ 0.
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Lemma 11.33 tells us that

E
[
X̃2

n,1

]
=

∫ ∞

0

2yP
(∣∣∣X̃n,1

∣∣∣ > y
)
dy ≤

∫ n

0

2yP (|X1| > y) dy

since P
(∣∣∣X̃n,1

∣∣∣ > y
)
= 0 for y > n and P

(∣∣∣X̃n,1

∣∣∣ > y
)
= P (|X1| > y)− P (|X1| > n) for y ≤ n, so we will

be done once we prove
1

n

∫ n

0

2yP (|X1| > y) dy → 0.

To see that this is the case, note that since 2yP (|X1| > y) → 0 as y → ∞, for any ε > 0, there is an N ∈ N
such that 2yP (|X1| > y) < ε whenever y ≥ N . Because 2yP (|X1| > y) < 2N for y < N , we see that for all

n > N ,

1

n

∫ n

0

2yP (|X1| > y) dy =
1

n

∫ N

0

2yP (|X1| > y) dy +
1

n

∫ n

N

2yP (|X1| > y) dy

≤ 1

n

∫ N

0

2Ndy +
1

n

∫ n

N

εdy =
2N2

n
+

n−N

n
ε,

hence

lim sup
n→∞

1

n

∫ n

0

2yP (|X1| > y) dy ≤ lim sup
n→∞

2N2

n
+

n−N

n
ε = ε,

and the result follows since ε was arbitrary. □

Example 11.34 (The St. Petersburg Paradox). Suppose that I o�ered to pay you 2j dollars if it takes j

�ips of a fair coin for the �rst head to appear. That is, your winnings are given by the random variable X

with P (X = 2j) = 2−j for j ∈ N. How much would you pay to play the game n times? The paradox is that

E[X] =
∑∞

j=1 2
j · 2−j = ∞, but most sensible people would not pay anywhere near $40 a game.

Using Theorem 11.32, we will show that a fair price for playing n times is $ log2(n) per play, so that one

would need to play about a trillion rounds to reasonably expect to break even at $40 a play.

Proof. To cast this problem in terms of Theorem 11.32, we will take X1, X2, ... to be independent random

variables which are equal in distribution to X and set Xn,k = Xk. Then Sn =
∑n

k=1 Xk denotes your total

winnings after n games. We need to choose bn so that

nP (X > bn) =

n∑
k=1

P (Xn,k > bn) → 0,

n

b2n
E
[
X21 {X ≤ bn}

]
= b−2

n

n∑
k=1

E
[
(Xn,k1 {|Xn,k| ≤ bn})2

]
→ 0.

To this end, let m(n) = log2(n) +K(n) where K(n) is such that m(n) ∈ N and K(n) → ∞ as n → ∞.

If we set bn = 2m(n) = n2K(n), we have

nP (X > bn) = n

∞∑
i=m(n)+1

2−i = n2−m(n) = 2−K(n) → 0

and

E
[
X21 {X ≤ bn}

]
=

m(n)∑
i=1

22i · 2−i = 2m(n)+1 − 2 ≤ 2bn,

so that
n

b2n
E
[
X21 {|X| ≤ bn}

]
≤ 2n

bn
= 2−K(n)+1 → 0.
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Since

an =

n∑
k=1

E [Xn,k1 {|Xn,k| ≤ bn}] = nE [X1 {X ≤ bn}] = n

m(n)∑
i=1

2i · 2−i = nm(n),

Theorem 11.32 gives
Sn − n log2(n)− nK(n)

n2K(n)
→p 0.

If we take K(n) ≤ log2 (log2(n)), then the conclusion holds with n log2(n) in the denominator, so we get

Sn

n log2(n)
→p 1. □

SLLN

Theorem 11.35 (Strong Law of Large Numbers). Suppose that X1, X2, ... are pairwise independent and

identically distributed with E |X1| < ∞. Let Sn =
∑n

k=1 Xk and µ = E[X1]. Then 1
nSn → µ almost surely

as n → ∞.

Proof. We begin by noting that X+
k = max{Xk, 0} and X−

k = max{−Xk, 0} satisfy the theorem's assump-

tions, so, since Xk = X+
k −X−

k , we may suppose without loss of generality that the Xk's are nonnegative.

Next, we observe that it su�ces to consider truncated versions of the Xk's:

Claim 11.36. If Yk = Xk1 {Xk ≤ k} and Tn =
∑n

k=1 Yk, then
1

n
Tn → µ a.s. implies

1

n
Sn → µ a.s.

Proof. Lemma 11.33 and the fact that G(t) = P (X1 > t) is nonincreasing imply

∞∑
k=1

P (Xk ̸= Yk) =

∞∑
k=1

P (Xk > k) =

∞∑
k=1

P (X1 > k) ≤
∫ ∞

0

P (X1 > t) dt = E |X1| < ∞,

so the �rst Borel-Cantelli lemma gives P (Xk ̸= Yk i.o.) = 0. Thus for all ω in a set of probability one,

supn |Sn(ω)− Tn(ω)| < ∞, hence
Sn

n
− Tn

n
→ 0 a.s. and the claim follows. □

The truncation step should not be too surprising as it is generally easier to work with bounded random

variables. The reason that we reduced the problem to the Xk ≥ 0 case is that this assures that the sequence

T1, T2, ... is nondecreasing.

Our strategy going forward will be to prove convergence along a cleverly chosen subsequence and then exploit

monotonicity to handle intermediate values.

Speci�cally, for α > 1, let k(n) = ⌊αn⌋, the greatest integer less than or equal to αn.

Chebychev's inequality and Tonelli's theorem give

∞∑
n=1

P
(∣∣Tk(n) − E

[
Tk(n)

]∣∣ > εk(n)
)
≤

∞∑
n=1

Var
(
Tk(n)

)
ε2k(n)2

= ε−2
∞∑

n=1

k(n)−2

k(n)∑
m=1

Var (Ym)

= ε−2
∞∑

m=1

Var (Ym)
∑

n:k(n)≥m

k(n)−2 ≤ ε−2
∞∑

m=1

E
[
Y 2
m

] ∑
n:αn≥m

⌊αn⌋−2.
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Since ⌊αn⌋ ≥ 1
2α

n for n ≥ 1 (by casing out according to αn smaller or bigger than 2),∑
n:αn≥m

⌊αn⌋−2 ≤ 4
∑

n≥logα m

α−2n ≤ 4α−2 logα m
∞∑

n=0

α−2n = 4(1− α−2)−1m−2,

hence
∞∑

n=1

P
(∣∣Tk(n) − E

[
Tk(n)

]∣∣ > εk(n)
)
≤ ε−2

∞∑
m=1

E
[
Y 2
m

] ∑
n:αn≥m

[αn]−2

≤ 4(1− α−2)−1ε−2
∞∑

m=1

E
[
Y 2
m

]
m2

.

Claim 11.37.

∞∑
m=1

E[Y 2
m]

m2
< ∞.

Proof. By Lemma 11.33,

E
[
Y 2
m

]
=

∫ ∞

0

2yP (Ym > y)dy =

∫ m

0

2yP (Ym > y)dy ≤
∫ m

0

2yP (X1 > y)dy,

so Tonelli's theorem gives

∞∑
m=1

E[Y 2
m]

m2
≤

∞∑
m=1

m−2

∫ m

0

2yP (X1 > y)dy = 2

∫ ∞

0

(
y
∑
m>y

m−2

)
P (X1 > y)dy.

Since

∫ ∞

0

P (X1 > y)dy = E[X1] < ∞, we will be done if we can show that y
∑
m>y

m−2 is uniformly bounded.

To see that this is the case, observe that

y
∑
m>y

m−2 ≤
∞∑

m=1

m−2 =
π2

6
< 2

for y ∈ [0, 1], and for j ≥ 2,
∞∑

m=j

m−2 ≤
∫ ∞

j−1

x−2dx = (j − 1)−1,

so

y
∑
m>y

m−2 = y

∞∑
m=⌊y⌋+1

m−2 ≤ y

⌊y⌋
≤ 2

for y > 1. □

It follows that

∞∑
n=1

P
(∣∣Tk(n) − E

[
Tk(n)

]∣∣ > εk(n)
)
< ∞, so, since ε > 0 is arbitrary, the �rst Borel-Cantelli

lemma implies that
Tk(n) − E

[
Tk(n)

]
k(n)

→ 0 a.s.

Now lim
k→∞

E[Yk] = E[X1] by the dominated convergence theorem, so limn→∞
E
[
Tk(n)

]
k(n)

= E[X1].

Thus we have shown that
Tk(n)

k(n)
→ µ almost surely.

Finally, if k(n) ≤ m < k(n+ 1), then

k(n)

k(n+ 1)
·
Tk(n)

k(n)
=

Tk(n)

k(n+ 1)
≤ Tm

m
≤

Tk(n+1)

k(n)
=

Tk(n+1)

k(n+ 1)
· k(n+ 1)

k(n)

since Tn is nondecreasing.
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Because
k(n+ 1)

k(n)
=

⌊
αn+1

⌋
⌊αn⌋

→ α as n → ∞, we see that

µ

α
≤ lim inf

n→∞

Tm

m
≤ lim sup

n→∞

Tm

m
≤ αµ,

and we're done since α > 1 is arbitrary. □

Stein Bounds

We begin with a bound on the complementary error function, 1− Φ(w) = 1√
2π

∫∞
w

e−
t2

2 dt.

Lemma 11.38. For all w > 0,

w

w2 + 1
e−

w2

2 ≤
∫ ∞

w

e−
t2

2 dt ≤ 1

w
e−

w2

2 .

Proof. The upper bound follows by observing that∫ ∞

w

e−
t2

2 dt ≤
∫ ∞

w

t

w
e−

t2

2 dt = w−1

∫ ∞

w2/2

e−u du = w−1e−w2/2.

For the lower bound, de�ne g(w) =
∫∞
w

e−
t2

2 dt− w
1+w2 e

−w2

2 . One easily checks that g(0) =
√

π/2, g′(w) =

−e−
w2

2 − 1−2w2−w4

1+2w2+w4 e
−w2

2 < 0, and limw→∞ g(w) = 0, so it must be the case that g(w) ≥ 0 for all w ≥ 0.

(Note that the lower bound holds trivially for w ≤ 0.) □

Proof of Fact 10.4. De�ne h̃(w) = h(w) − Nh and c0 =
∥∥h̃∥∥∞, and let c1 = ∥h′∥∞ if h is absolutely

continuous and c1 = ∞ otherwise. Since h̃ and fh are unchanged if h is replaced by h−h(0), we may assume

that h(0) = 0. Thus |h(t)| ≤ c1 |t| and |Nh| ≤ c1E|Z| ≤ c1
√
2/π.

We begin by bounding the sup norm of

fh(w) = e
w2

2

∫ w

−∞
h̃(t)e−

t2

2 dt

= −e
w2

2

∫ ∞

w

h̃(t)e−
t2

2 dt.

Applying the upper bound from Lemma 11.38 shows that for all w > 0

d

dw
e

w2

2

∫ ∞

w

e−
t2

2 dt = we
w2

2

∫ ∞

w

e−
t2

2 dt− e
w2

2 e−
w2

2 ≤ 0.

It follows that e
w2

2

∫∞
|w| e

− t2

2 dt is minimized at w = 0, in which case its value is
∫∞
0

e−
t2

2 dt =
√
π/2.

Consequently,

|fh(w)| ≤

e
w2

2

∫ w

−∞

∣∣∣h̃(t)∣∣∣ e− t2

2 dt, w ≤ 0

e
w2

2

∫∞
w

∣∣∣h̃(t)∣∣∣ e− t2

2 dt, w ≥ 0

≤ e
w2

2 min
{
c0

∫ ∞

|w|
e−

t2

2 dt, c1

∫ ∞

|w|

(
t+

√
2/π

)
e−

t2

2 dt
}

≤ min
{√

π/2c0, 2c1

}
.
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Next we consider f ′
h(w) = wfh(w) + h̃(w). By our previous analysis, when w ≥ 0, we have

|f ′
h(w)| ≤

∣∣∣h̃(w)∣∣∣+ ∣∣∣∣wew2

2

∫ ∞

w

h̃(t)e−
t2

2 dt

∣∣∣∣
≤ c0 + c0we

w2

2

∫ ∞

w

e−
t2

2 dt ≤ 2c0.

A nearly identical argument gives |f ′
h(w)| ≤ 2c0 for w < 0, completing the proof of the claims for h bounded.

If h is absolutely continuous, then

h(t)−Nh =
1√
2π

∫ ∞

−∞
[h(t)− h(x)]e−

x2

2 dx

=
1√
2π

∫ t

−∞

∫ t

x

h′(u)e−
x2

2 dudx− 1√
2π

∫ ∞

t

∫ x

t

h′(u)e−
x2

2 dudx

=
1√
2π

∫ t

−∞

∫ u

−∞
h′(u)e−

x2

2 dxdu− 1√
2π

∫ ∞

t

∫ ∞

u

h′(u)e−
x2

2 dxdu

=

∫ t

−∞
h′(u)Φ(u) du−

∫ ∞

t

h′(u)
(
1− Φ(u)

)
du,

so

1√
2π

∫ w

−∞
[h(t)−Nh]e−

t2

2 dt =
1√
2π

(∫ w

−∞

∫ t

−∞
h′(u)Φ(u)e−

t2

2 dudt−
∫ w

−∞

∫ ∞

t

h′(u)
(
1− Φ(u)

)
e−

t2

2 dudt

)
=

∫ w

−∞
h′(u)Φ(u)

(
1√
2π

∫ w

u

e−
t2

2 dt

)
du−

∫ w

−∞
h′(u)

(
1− Φ(u)

)( 1√
2π

∫ u

−∞
e−

t2

2 dt

)
du

−
∫ ∞

w

h′(u)
(
1− Φ(u)

)( 1√
2π

∫ w

−∞
e−

t2

2 dt

)
du

=

∫ w

−∞
h′(u)Φ(u)[Φ(w)− Φ(u)] du−

∫ w

−∞
h′(u)

(
1− Φ(u)

)
Φ(u) du

−
∫ ∞

w

h′(u)
(
1− Φ(u)

)
Φ(w) du

= −
∫ w

−∞
h′(u)Φ(u)

(
1− Φ(w)

)
du−

∫ ∞

w

h′(u)
(
1− Φ(u)

)
Φ(w) du,

hence

fh(w) = −
√
2πe

w2

2

((
1− Φ(w)

) ∫ w

−∞
h′(u)Φ(u) du+Φ(w)

∫ ∞

w

h′(u)
(
1− Φ(u)

)
du

)
.

Combining these representations yields

f ′
h(w) = wfh(w) + h(w)−Nh

= −
√
2πwe

w2

2

((
1− Φ(w)

) ∫ w

−∞
h′(u)Φ(u) du+Φ(w)

∫ ∞

w

h′(u)
(
1− Φ(u)

)
du

)
+

∫ w

−∞
h′(u)Φ(u) du−

∫ ∞

w

h′(u)
(
1− Φ(u)

)
du

=
[
1−

√
2πwe

w2

2

(
1− Φ(w)

)] ∫ w

−∞
h′(u)Φ(u) du

−
[
1 +

√
2πwe

w2

2 Φ(w)
] ∫ ∞

w

h′(u)
(
1− Φ(u)

)
du.

81



Since integration by parts shows that∫ w

−∞
Φ(u) du = wΦ(w)− 1√

2π

∫ w

−∞
ue−

u2

2 du = wΦ(w) +
1√
2π

e−
w2

2 ,∫ ∞

w

[1− Φ(u)] du = −w
(
1− Φ(w)

)
+

∫ ∞

w

ue−
u2

2 du = −w
(
1− Φ(w)

)
+

1√
2π

e−
w2

2 ,

we conclude that

|f ′
h(w)| ≤ ∥h′∥∞ sup

w∈R

[∣∣∣1−√
2πwe

w2

2

(
1− Φ(w)

)∣∣∣ (wΦ(w) + 1√
2π

e−
w2

2

)
+
∣∣∣1 +√

2πwe
w2

2 Φ(w)
∣∣∣ ( 1√

2π
e−

w2

2 − w
(
1− Φ(w)

)
+

)]
.

By casing out according to the sign of w and di�erentiating, one can show that the term in the brackets

attains its maximum value of
√
2/π at w = 0.

It remains only to derive the second derivative bound in the absolutely continuous case. For this, note that

f ′′
h (w) =

d

dw

[
wfh(w) + h̃(w)

]
= fh(w) + wf ′

h(w) + h′(w)

= (1 + w2)fh(w) + wh̃(w) + h′(w).

Using our previous estimates,

(1 + w2)fh(w) + wh̃(w)

= −
√
2πe

w2

2 (1 + w2)

((
1− Φ(w)

) ∫ w

−∞
h′(u)Φ(u) du+Φ(w)

∫ ∞

w

h′(u)
(
1− Φ(u)

)
du

)
+ w

∫ w

−∞
h′(u)Φ(u) du− w

∫ ∞

w

h′(u)
(
1− Φ(u)

)
du

=
[
w −

√
2πe

w2

2 (1 + w2)
(
1− Φ(w)

)] ∫ w

−∞
h′(u)Φ(u) du

−
[
w +

√
2πe

w2

2 (1 + w2)Φ(w)
] ∫ ∞

w

h′(u)
(
1− Φ(u)

)
du.

Now the lower bound in Lemma 11.38 ensures that w −
√
2πe

w2

2 (1 + w2)
(
1− Φ(w)

)
≤ 0 for all w, and this

in turn implies w +
√
2πe

w2

2 (1 + w2)Φ(w) ≥ 0 for all w.

The triangle inequality thus gives∣∣∣(1 + w2)fh(w) + wh̃(w)
∣∣∣ ≤ c1

∣∣∣w −
√
2πe

w2

2 (1 + w2)
(
1− Φ(w)

)∣∣∣ ∫ w

−∞
Φ(u) du

+ c1

∣∣∣w +
√
2πe

w2

2 (1 + w2)Φ(w)
∣∣∣ ∫ ∞

w

(
1− Φ(u)

)
du

= c1

(
−w +

√
2πe

w2

2 (1 + w2)
(
1− Φ(w)

))(
wΦ(w) +

1√
2π

e−
w2

2

)
+ c1

(
w +

√
2πe

w2

2 (1 + w2)Φ(w)
)(

−w
(
1− Φ(w)

)
+

1√
2π

e−
w2

2

)
= c1

(
−w +

√
2πe

w2

2 (1 + w2)
(
1− Φ(w)

))(
wΦ(w) +

1√
2π

e−
w2

2

)
+ c1

(
w +

√
2πe

w2

2 (1 + w2)Φ(w)
)(

−w
(
1− Φ(w)

)
+

1√
2π

e−
w2

2

)
.

82



A little arithmetic shows that this �nal expression is equal to c1, so

|f ′′
h (w)| ≤

∣∣∣(1 + w2)fh(w) + wh̃(w)
∣∣∣+ |h(w)| ≤ 2c0

for all w as desired. □
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