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1 INTRODUCTION

Probability Spaces
A probability space is a measure space ({2, F, P) with P(Q) = 1.

The sample space 2 can be any set and is generally thought of as the collection of all possible outcomes of
some experiment or all possible states of some system. Elements of ) are referred to as elementary outcomes.

The general idea is that we know all outcomes that could occur in principle, but not which one actually does.

The o-field (or o-algebra) F C 2% satisfies

(1) F is nonempty
(2) E€e F=E“cF

(3) For any countable collection {E;};er C F, .-, Fi € F.

iel

(Since N;e; Bi = (Ujer Eic)c, F is also closed under countable intersections.)

Elements of F are called events, and can be regarded as sets of elementary outcomes about which one can
say something meaningful. Before the experiment has been performed, a meaningful statement about £ € F
is P(F). Afterward, a meaningful statement is whether or not F occurred—that is, whether the experiment

resulted in an outcome w € FE.

The probability measure P : F — [0, 1] satisfies

(1) P(2) =1
(2) For any countable disjoint collection {E;}icr, P (L;c; Bi) = > ;er P(E:).

The interpretation is that P(A) represents the chance that event A occurs (though there is no general

consensus about what that actually means).

Example 1.1. Rolling a fair die: Q = {1,2,3,4,5,6}, F =29, P(E) = £
Example 1.2. Flipping a (possibly biased) coin: Q = {H,T}, F =29 = {0,{H},{T},{H,T}}, P satisfies
P{H}) =pand P{T}) = 1—p for some p € [0,1]. (If p € {0,1}, then the outcome is guaranteed in
advance; deterministic processes also fit within the probability framework.)

Example 1.3. Random point in the unit interval: Q = [0, 1], F = By ;] = Borel Sets, P = Lebesgue measure.

The experiment here is to pick a real number between 0 and 1 uniformly at random. Uniformity corresponds
to translation invariance, which is the primary defining property of Lebesgue measure. Indeed, one can fully
characterize this uniform probability measure by requiring that for each 0 < a < b < 1, P([a,b]) = b — a.
Observe that each outcome z € [0,1] has P({z}) = P([z,z]) = x — x = 0, so the experiment must result in

the realization of an outcome with probability zero.
22
Example 1.4. Standard normal distribution: Q@ =R, F = B, P(E) = \/% [pe 7 da.

Example 1.5. Poisson distribution with rate A > 0: @ =No, F =2% P(E)=¢ Y, p ’}%,
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Why Measure Theory

Historically, probability was defined in terms of a finite number of equally likely outcomes (Example 1.1) so
that |Q] < oo, F =22, and P(E) = I&.

When the sample space is countably infinite (Example 1.5), or finite but the outcomes are not necessarily
equally likely (Example 1.2), one can speak of probabilities in terms of weighted outcomes by taking a
function p : Q@ — [0,1] with > p(w) = 1 and setting P(E) = > 5 p(w).

For most practical purposes, this can be generalized to the case where Q) C R by taking a weighting function
f:9Q —[0,00) with fQ x)dz = 1 and setting P(F fE x) dr (Examples 1.3 and 1.4), but one must be
careful since the integral is not defined for all sets E, see Example 1.7.

Those who have taken undergraduate probability will recognize p and f as pmfs and pdfs, respectively. In
measure theoretlc terms, f = £~ is the Radon-Nikodym derivative of P with respect to Lebesgue measure.

Similarly, p = —C where c is countlng measure on €.

Measure theory provides a unifying framework in which these ideas can be made rigorous, and it enables

further extensions to more general sample spaces and probability functions.

Also, note that in the formal axiomatic construction of probability, there is absolutely no mention of chance,

propensity, credence, etc., so we can use the theory without worrying about any philosophical issues.

Random Variables and Expectation

Given a measurable space (5, G), we define an (5, G)-valued random variable to be a measurable function
X : Q — S. This just means that for any £ € G, X ~}(E) € F.

In this class, the unqualified term “random variable” will refer to the case (5,G) = (R, B). (The collection of
Borel sets, B, is the smallest o-field containing all of the open subsets of R.)

We typically think of X as an observable, or a measurement to be taken after the experiment has been

performed.

An extremely useful example is given by choosing any A € F and defining the indicator function,

1, weAd
lA(w){ 0, we A°

Note that if (Q,F, P) is a probability space and X is an (5, G)-valued random variable, then X induces
the pushforward probability measure = P o X! on (S,G). Frequently, we will abuse notation and write
P(X € B) = P(X~Y(B)) = P({w € Q: X(w) € BY}) for u(B).

X also induces the sub-o-field o(X) = {X~!(E) : E € G} C F. If we think of 2 as the possible outcomes of
an experiment and X as a measurement to be performed, then o(X) represents the insight that measurement
will afford us. (If we learn that X (w) € E, then we know w € X ~}(E).)

In contrast with other areas of measure theory, in probability we are often interested in various sub-o-fields
Fo C F, which we think of in terms of information content.

For instance, if the experiment is rolling a six-sided die (Example 1.1), then F, = {0, {1,3,5},{2,4,6},Q}
represents the information concerning the parity of the value rolled. If we only had access to this data, it

would not be meaningful to talk about the die landing on a number greater than 3 since {4,5,6} ¢ Fo.
4



In this case, one might choose instead to model the experiment as Qy = {even,odd}, Fo = 2, Py({even}) =
Py({odd}) = % There are often many valid models for an experiment; probability theory just tells us how to
proceed once we've settled on one that is deemed appropriate based on other empirical /practical /theoretical

considerations.

Note that the probability space (2, F, P) from Example 1.1 extends (Qo, Fo, Po) in the sense that there is a
measurable surjection 7 : (Q,F) — (€9, Fo) with the property that P(r~!(E)) = Py(E) for all E € Fop—

even, 2|j

namely 7(j) = .
odd, 2ty

We often want to be able to add new details and sources of randomness on the fly, so one takes it as a general
rule that probability should only study concepts and perform operations that are preserved by extensions of
the underlying space. For instance, probabilities of events or set operations like unions, intersections, and

complements are probabilistic concepts, but the equality (as sets) of two events is not, nor is their cardinality.

The ezpectation (or mean or expected value) of a real-valued random variable X on (9, F, P) is defined as
E[X] = [, X (w) dP(w) whenever the integral is well-defined.

Expectation is generally interpreted as a weighted average which gives the ‘best guess’ for the value of the

random quantity X.

We will study random variables and their expectations in greater detail soon. For now, the point is that many
familiar objects from undergraduate probability can be rigorously and simply defined using the language of

measure theory.

That said, it should be emphasized that probability is not just the study of measure spaces with total mass
one. As useful and necessary as the rigorous analytic foundations are, it is equally important to cultivate a
probabilistic way of thinking whereby one conceptualizes problems in terms of coin tossing, card shuffling,

particle trajectories, and so forth.

Example 1.6. Probabilities aggregate like masses and areas, so it is natural that the first probability
measures one sees are discrete (characterized by mass functions) or absolutely continuous (characterized by
density functions). There are also ‘singular continuous measures,” but the need for a general theory is evident
without considering anything so exotic.

For instance, consider the mixture of the Unif(0, 1) and Pois(1) measures where one chooses an element of
[0,1] UN via the following procedure: Flip a fair coin. If it comes up heads, pick a real number uniformly
from [0,1]. If it comes up tails, pick a nonnegative integer n with probability e=!/n!.

The measure describing this experiment is supported on an uncountable set and assigns positive probability

to some individual outcomes, so it is neither discrete nor continuous.

Example 1.7. When discussing the uniform distribution on [0, 1], we detailed how to find the probability
that a point is chosen in some subinterval of [0, 1], but one can imagine asking about events that are not so
clearly expressed in those terms, like “What is the probability that a rational number is chosen?” or “What

is the probability that a number is chosen with no 1’s in its base 3 representation?”

For the first of these, we recall that P({z}) = 0 for all z € [0,1]. Since Q is countable, we conclude that
P(rational) = Zze(@[o y P({z}) =0.



For the second, the event in question is uncountable (since one can bijectively map oneless ternary repre-
sentations to binary representations by halving the digits), so we don’t get an easy answer from countable
additivity.

However, we can observe that not having a 1 in the first ternary digit means that a point was not chosen from
(1/3,2/3). Not having a one in the second digit means a point was not, chosen from (1/9,2/9) or (7/9,8/9)
either. In general, no 1 in the n'" place precludes the chosen point from lying in the open middle third of
the 2"~! intervals of length 1/3™ that have not already been ruled out. The set of forbidden points thus has

probability >, 2;;1 =1 13/2?}3 =1, so the probability of choosing a point in the Cantor set is 0.

An example of a subset of [0,1] which has no well-defined probability under this measure is given by the
following construction:

Define an equivalence relation on [0,1) by z ~y if x — y € Q.

Using the axiom of choice, let E C [0,1) consist of exactly one point from each equivalence class.

For q € Qo,1), define E, = E + ¢ (mod 1). By construction E, (| E, = for r # ¢ and UqG@[o,1> E,=10,1).
Thus, by countable additivity, we must have

1=m([0,1)) =m< L] Eq> = Y m(E,).
9€Qp,1) 9€Qpo,1)
However, Lebesgue measure is translation invariant, so m(E,) = m(E) for all q.
We see that m(E) is not well-defined as m(FE) = 0 implies 1 = 0 and m(E) > 0 implies 1 = co.
The existence of non-measurable sets can be proved using slightly weaker assumptions than the axiom of

choice (such as the Boolean prime ideal theorem), but it has been shown that the existence of non-measurable

sets is not provable in Zermelo-Fraenkel alone.
In three or more dimensions, the Banach-Tarski paradox shows that in ZFC, there is no finitely additive
measure defined on all subsets of Euclidean space that is invariant under translation and rotation.

(The paradox is that one can cut a unit ball into five pieces and reassemble them using only rigid motions

to obtain two disjoint unit balls.)


https://en.wikipedia.org/wiki/Axiom_of_choice

2 FIRST PROPERTIES

We will delve into the technicalities of constructing probability spaces presently, but first let’s explore some
consequences of the definition to better understand the general framework.

Probability Measures

The following simple facts are extremely useful and will be employed frequently throughout this course.

Theorem 2.1. Let P be a probability measure on (0, F).

(i) Complements For any A € F, P(A®) =1 — P(A).
(ii) Monotonicity For any A, B € F with A C B, P(A) < P(B).
(iii) Subadditivity For any countable collection {E;} 2, C F, P (U2, Ei) < > ooy P(E;).

(iv) Continuity from below If A; ~* A (i.e. A; C Ay C ... and |J;°| A; = A), then lim P(A,) = P(A).

n—oo
(v) Continuity from above If A4; \, A = (12, 4;, then lim P(A,) = P(A).
n—oo
Proof.
For (i), 1 = P(Q) = P(AU A®) = P(A) + P(AY) by countable additivity.

For (ii), P(B) = P (AU (B\ A)) = P(A) + P(B\ A) > P(A).

j
Ui, F; =U;_, E; for all n € NU {oc}. Since F; C E; for all ¢, we have

P (G E> =P <|j Fi) = iP(Fi) < iP(Ei).

i=1 =

For (iii), we “disjointify” the sets by defining F} = E; and F; = E; \ (Ul;ll Ej) for ¢ > 1, and observe that

For (iv), set By = A; and B; = A; \ A;_; for ¢ > 1, and note that the B;’s are disjoint with | JI_, B; = A,
and (J;2, B; = A. Then

- ({15) - 5100~ i S
i=1 i=1 i=1

= lim P <|_| Bi> = lim P(4,).

i=1
For (v),if A1 D A3 D ... and A = (;2, A;, then A{ C A§ C ... and A° = (N2, A)© = Uss, A%, so it
follows from (i) and (iv) that

P(A)=1-P(A°) =1- lim P(AY) = lim (1- P(AS)) = lim P(A,). O

n—oo n—oo n—oo

We leave it as an easy exercise to show that one also has the union rule P(AUB) = P(A)+ P(B)— P(ANB).
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Sigma Algebras

We now review some some basic facts about o-fields. Our first observation is immediate from the definition.

Proposition 2.2. If {Fi}icr is a collection of o-algebras on Q, then (., F; is also a o-algebra on €.

It follows from Proposition 2.2 that for any collection of sets C C 2, there is a smallest o-algebra containing
C—namely, the intersection of all o-algebras containing C. This is called the o-algebra generated by C and is
denoted by o(C).

Note that if F is a o-algebra and C C F, then o(C) C F.

An important class of examples are the Borel o-algebras: If (X, T) is a topological space, then Bx = o(T)
is called the Borel o-algebra.

Recall that in R™ with the standard topology, U C R is open if for every x € U, there is an ¢ = ¢(x) > 0
such that the ball B.(x) = {y € R": ||x — y|| < €} is contained in U.

Lemma 2.3. Every open subset of R is a countable disjoint union of open intervals.

Proof. Define an equivalence relation on the open set U C R by x ~ y if (min{x, y}, max{x, y}) cU.

The equivalence class containing x € U is thus the maximal open subinterval of U containing z.

(This relation clearly symmetric in x and y, and we always have (min{z,z}, max{z,z}) = (z,z) =0 C U,
so it’s reflexive as well. To see that it’s transitive, note that if z,y,z € U with z ~ y and y ~ z, then:
x <y < zimplies (z,2) = (x,y) U{y} U (y,2) CU; < z < y implies (z, z) C (z,y) C U; and similarly for
y<az<zy<z<z,z<y<z z<z<y.)

Let Z denote the set of equivalence classes under ~. Then the elements of Z are disjoint open subintervals
of U and every x € U belongs to some I € Z. Moreover, each I € 7 contains a rational, so Z is countable.

It follows that U = | |;.; [ is an example of the asserted decomposition. O

Theorem 2.4. The Borel g-algebra for R with the standard topology is generated by each of the following:

The finite open intervals £, = {(a, b): a,b € R with a < b}

The finite closed intervals E; = {[a, bl : a,b € R with a < b}

The finite half-open intervals £3 = {(a7 bl : a,b €R with a < b} or & = {[a,b) : a,b € R with a < b}
The open rays &5 = {(a,00) : a € R} or & = {(—o0,b) : b€ R}

The closed rays & = {[a,0) : a € R} or & = {(—o0,b] : b€ R}

o o TP

Proof. B is the smallest o-algebra containing the open subsets of R. Since open intervals are open sets, B
contains the o-algebra generated by the open intervals. Since every open set is a countable union of open
intervals, the o-algebra generated by the open intervals contains B as well, hence the two are equal.

As every open interval is finite or a countable union of finite open intervals—(a, 00) = |J,—,(a+n,a+n+2),

for example—we conclude that o(&;) = B.
Likewise, the complement of a finite closed interval is the union of two open intervals, so o(&;) = B.
Similarly, (a,b] = h_;(a,b+ L), so & C o(&1) = B and thus 0(&3) C B; and (a,b) = Up—;(a,b — 1], so

&1 Co(&) and thus B =o0(&1) C o(&).

The other cases are similar. O



Remark 2.5. For any S C [8], B contains every set in £g = (J;cg & and for any i € S, B = o(&;) C 0(&s),
so the Borels are generated by any union of the &;’s as well. Also, the density of Q in R enables us to
take any of the above collections restricted to have rational endpoints if we so desire. For example, given
a < b, there exist rational sequences a, , a and b, ' b so that (a,b) = (J,—;(an,b,). It follows that

o ({(a,b) : a,b € Q}) = o(&) = B. This is nice since it allows one to work with countable generating sets.

Our main technical result about o-algebras is Dynkin’s 7-A Theorem.
Definition. A nonempty collection of sets P C 2% is called a 7-system if A, B € P implies AN B € P.

Definition. A collection of sets £ C 29 is called a A-system if
(1) QecL

(2) A, BeLand AC B, then B\Ae L

(3) If A, € L with A, /A, then A€ L

Theorem 2.6. If P is a w-system and L is a A-system with P C L, then o(P) C L.

Proof. We begin by observing that the intersection of any number of A-systems is a A-system, so for any
collection C, there is a smallest A-system ¢(C) containing C. Thus it will suffice to show that ¢(P) is a
o-algebra since then o(P) C 4(P) C L.

Moreover, A-systems that are closed under intersections are o-algebras—FE® = Q\ E, EUF = (E¢ N F%)°,
and U;_, Ex /* Uz, Ex—so we need only demonstrate that ¢(P) is a m-system.

To this end, let A € £(P) and define L4 = {E: ANE € {(P)}. Since ANQ = A € {(P), we have Q € L4.
Also,if E,F € L4 with EC F,then ANE C ANF arein {(P),so AN(F\E)=(ANF)\(ANE) € {(P),
showing that £, is closed under subset differences as well. Finally, if £y C Fy C --- is a sequence of sets in
L4 with E =J;7, E,, then ANE; C ANE, C --- is asequence in £(P), hence ANE = |- (ANE,) € {(P).
We have thus shown that £4 is a A-system for every A € £(P).

Now P is a w-system, so if C' € P, then P C L¢, hence £(P) C L. It follows that if B € (P), then B € L¢,
so BNC € ¢(P). As this is true for all C € P, we see that for every B € {(P), P C Lp, hence {(P) C Lp.
This completes the proof since A, B € ¢(P) implies A € Lp and thus AN B € {(P). O

It is not especially important to commit the details of the preceding argument to memory, but it worth
seeing once and you should definitely know the statement of the theorem. Though it seems a bit obscure
upon first encounter, its use in probability is ubiquitous.

In typical applications, we show that a property holds on a w-system that we know generates the o-algebra
of interest. We then show that the collection of all sets for which the property holds is a A-system in order

to conclude that it holds on the entire o-algebra.

Example 2.7. Suppose Py and P, are probabilities on (R, B) with P; ((—o00,a]) = P»((—00,a]) for all a € R.
Since the right-closed rays form form a m-system that generates the Borel sets, we can conclude that P; and
P, agree on B by showing that {A C B: Pi(A) = P»(A)} is a A-system.

To see that this is so, note that P;(Q) = 1 = P»(Q); if P1(A) = P»(A4) and P (B) = P»(B) with A C B,
then P;(B\ A) = Pi(B) — Pi(A) = P»(B) — Po(A) = Po(B\ A); and if A, & A with P1(4,) = P2(A,) for
all n, then P;(A) = lim, o0 P1(4,) = limy, o0 P2(A,) = Pa(A).
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3 CONSTRUCTING PROBABILITY SPACES

Now that we have some familiarity working with probability spaces, we turn our attention to the problem
of constructing them.

We begin by dispensing with the easy case: If () is any countable set, its outcomes can be enumerated as
Q = {w1,ws,...}. Given any sequence of nonnegative numbers {p;}32; with > .7 py = 1, we can define a
probability measure P on (Q,2) by P(E) =Y, cp Pk-

Conversely, given any probability @ on (£, 29), the sequence {gx }32, defined by g, = Q{ws} is nonnegative
and sums to 1, so this fully characterizes such discrete probability measures.

Note that if Q is countably infinite, it cannot support a uniform probability since P{w} = ¢ for all w € Q
implies 1 = P(Q) = > .o P{w} =>",—, c. If ¢ =0, this gives 1 = 0, and if ¢ > 0, it gives 1 = oo.

To treat uncountable sample spaces, we take inspiration from the case of the uniform distribution on [0, 1].
There, we said that the probability is characterized by P([a,b]) =b—a forall 0 <a <b < 1.

Observe that this implies P{a} = P([a,a]) =0, so (a,b], [a,b), and (a,b) also are assigned probability b — a.
(For instance, b — a = P([a,b]) = P((a,b] U {a}) = P((a,b]) + P{a} = P((a,b]).)

As such, we at least know how to define P on J = {J C [0,1] : J is an interval}. As J is not closed under

unions, it is not a o-algebra, but it is a start.

Definition. A collection of subsets S of Q is called a semialgebra if

(1) ,Q€eS
(2) S1,52 € S implies S5 NS, € S
(3) If S € S, there exist disjoint T1,...,T, € S with S = | |}_, Tk

Note that parts (1) and (2) imply that semialgebras are m-systems.

Example 3.1. For any nonempty interval I C R, J;r = {J C I : J is an interval} is a semialgebra. Indeed,
0 = (a,a] and Q = I belong to J;, the intersection of two intervals is an interval, and the complement of an

interval is an interval or disjoint union of two intervals.

Example 3.2. On R, we can define the collection of h-intervals by H = {(a,b] : —00 < a < b < oo}
with the understanding (a, co] = (a,00). Arguing as in the previous example, one easily checks that H is a

semialgebra.

Example 3.3. If §; and S, are semialgebras over 1 and Qo, then R = {A1 XAy : Aj € Sk} is a semialgebra
over 1 X Qy: R certainly contains () and Q4 X Qg; A1 X Ag, By x By € R implies (A1 X A2) N (By x Bg) =
(A1 N By) x (A2 N Bs) € R; and if A x B € R, there exist {S,}7, C Sy, {Tu}7, C Sp with AY = [ ||, Sk
and B¢ = | |,_, Tv, hence

(AxB)? = (A°xB)| [(AxBY)| [(A°xB) = <|i|(5k X B)) | ] <|i|(A X T¢)> | ] <D ' (S x T¢)> :

k=1 =1 k=1 (=

Tterating this procedure shows that if Sy is a semialgebra over Q for £ = 1,...,n, then the collection of
rectangles {Ay x --- x A, : Ay € S} is a semialgebra over Q1 X -+ X ;.
In particular, {J; x -+ x Jq : each Jj is an interval} (or an h-interval) is a semialgebra over R?.
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Example 3.4. If § is a semialgebra over Q and A C , then S4 = {S NA: Se 8} is a semialgebra

over A since A=QNAand § = (N A belong to Sa; A1, Ax € S4 implies that there exist Sy, S € S with

A; = 8;NAsothat AiNAs = (S1NA)N (SgﬂA) =(S1NYS)NAES,; and if B=SNA € Sa, then
=A\B=A\S=ANnS =An(Ui_,Tx) = LUi_,(Tx N A) € Sa. (Note that S4 C S iff A€ S.)

Definition. A (probability) protomeasure on a semialgebra S over  is a function Py : S — [0, 1] with

(1) Py(0) =0 and Py(Q2) =1
(2) If Sy,...,S, € S are disjoint with S =| || S; € S, then Py(S) =>""" | Py(S:)
(3) If 51752 ...€S with § = U;.il S; € S, then P, (S) < Zfil P(Sl)

(The countable subadditivity condition lets us replace finite additivity with finite superadditivity if desired;
nonnegativity and finite additivity make Py(0)) = 0 redundant.)

Example 3.5. Our length function Ag(J, ) = b — a for any interval J,; with endpoints a < b is a pro-

tomeasure on J.

Indeed, for any 0 < a < b <1, Ag(Jap) =b—a €[0,1], Ao(D) = Ao ((a,a)) =0, and Xo([0,1]) =1

Now suppose that J,, 4, .., Ja, b, are disjoint intervals with J = UZ:1 Ja, by, also an interval. By reindexing
if need be, we can assume that a3 < --- < a,. Since the subintervals are disjoint, we must have that

ap+1 > by, and since J is an interval as well, we must have that ay1 < by. It follows that

n—1 n—1 n
/\o(J) =b,—a = Z(akH — ak) + (bn - an) = Z(bk - aj) + (bn - an) = ZAO(Jambk)v
k=1 k=1 k=1

hence Ag is finitely additive.

Now suppose that Jq, p,, Jas 0s,- .- is & sequence of intervals with U;ozl Jar b = Jap. Fix € > 0 and define
Jr = (Otk,ﬂk) with ap = a — gk% and B = by + 2,9% so that Ao(Jk) = /\0(Jak bk) 2% and Uzo 1 Jp 2
l[a+5,b—5]. Compactness dictates that there exist {k(1),...,k(n)} C Nsuch that [a+5,b—5] € U;_; Jr(s)

gy < < gy, and agipry < Br) < Brii+1) for i < n—otherwise, Ji;y or Jy(;41) could be omltted—so

Z)‘O arbr) = Z Jany, bk( ) Z Xo(Jk(iy) — 5507
i=1
(Bk( ) — k(i) Z

k=1 i=1
= Brn) — k) —€ 2> (b—5) —(a+5) —e=Xo(Jap) — 2¢.

As e was arbitrary, we see that g is countably subadditive as well.

> Brn) — Qk(n) Z Qp(it1) — Qk(i)) — €

3o

A NgE

3

Definition. A function F' : R — R which is nondecreasing (so x < y implies F'(z) < F(y)) and right-
continuous (so F'(x) = lim,_,,+ F(y)) is called a distribution function.

Monotonicity ensures that a = lim,_, o, F(z) and 8 = lim,_, F(x) exist in R = RU {£oo}. If & = 0 and
8 =1, we say that F' is a probability distribution function.

Example 3.6. If F' is a probability distribution function, then po((a,b]) = F(b) — F(a) is a probability
protomeasure on the semialgebra H of h-intervals. The argument here is pretty much the same as in the
previous example—which essentially corresponds to the case F'(x) = 21j9,11(%) + 1(1,00)(7)—but we need to

be a little careful with countable subadditivity.
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To this end, suppose that (Jr—, (ax, bx] = (a,b], where we assume that a,b € R to begin with. Given ¢ > 0,
right-continuity ensures there is a § > 0 with F'(a + ) — F(a) < €. Likewise, there exist §; > 0 such that
F(bj+6;)— F(b;) < e/27. The open intervals (a;, b; + ;) cover the compact set [a+ §,b], so there is a finite
subcover. By discarding any (aj,b; 4+ ;) that is contained in a larger one and reindexing, we may assume
la+6,0] CUj_ (a;,b5 +6;), a1 < -+ < an, and bj + 6; € (a;j41,bj41 + d;41) for j < n. It follows that

uo((a,b])SF(b)—F(a+5)+s§F(b +0p) — F(a1) +¢

= F(bn +6n) —F(an)+ [F(aj+1) — F(a;)] +¢

j=1
n—1
F(by +65) Z (bj + ;) — F(a;)] +¢
SZ[F(I)J-)—#QJ €<Zu0 ((aj,b; +25<Zu0 (aj,b;]) + 2e.
j=1 j=1

To treat the case where (a, b] is infinite, observe that the boundary conditions on F' ensure there is an M > 0
such that F'(—M) < e and F(M) > 1—e. As the preceding argument shows that I = (max{a, —M }, min{b, M })
satisfies puo(I) < 3272, puo((aj, bs]) + 22, and we know that jo((a,b]) < po(I) 4 2¢, we conclude that pq is
indeed countably subadditive.

Now that we have a nice protomeasure Ay on J, a natural first guess would be to try to extend it to

B; := {countable unions of sets in J}.

Unfortunately, this is not a o-algebra. For instance, consider the the Cantor set K from Example 1.7. We
know that K¢ can be written as a countable union of the open middle-thirds sets (%, %), (%, %), (%, g), ...
and thus belongs to B;. However, (K°)° = K ¢ B;. Indeed, suppose that K = J,c; J; with I countable
and each J; € J. If any J; contained two points a < b, then we would have (a,b) C J;. But this is impossible

because choosing n so that < b — a shows that there is an element of (a,b) with a 1 in its n'"' ternary

3’71
digit. However, the J; cannot all be singletons either as this would imply that K was countable.

Instead, we remain patient and first consider the set By := {ﬁnite unions of sets in J } The following

proposition will make it easier to extend our protomeasure to By.

Proposition 3.7. If S is a semialgebra, {ﬁm'te unions of sets in S} = {ﬁm'te disjoint unions of sets in S}.

Proof. If S1,...,5, € S, we can define

i—1 i—1 - n; i—1 [ 7
Ri=8\|JS=(Sins) = ﬂ(sm|_|Tj,k>:ﬂl|_|SmTjk
j=1 j=1 j= k=1 j=1 Lk=1

with each S; N7} € S. As this in turn can be written as a finite disjoint union of finite intersections of
sets in S, we see that (J!", S; = | |!"; R; can be expressed as a finite disjoint union of sets in S. The other

inclusion is immediate. O
Definition. A collection of subsets of Q is called an algebra if it contains () and is closed under complements
and finite unions.

Algebras are also closed under finite intersections since Ay, ..., A, € A implies ()_; A4; = (U;L:1 Aic)c c A.
12



Proposition 3.8. If S is a semialgebra over ), then S = {finite disjoint unions of sets in S} is an algebra.

Proof. In view of Proposition 3.7, we can equivalently define S = {finite unions of sets in S}. With this
characterization, we readily check that S contains (J, and if 4; = U;“Il S;j witheach S; ; € Sfori=1,...,n,
then U, A; = UZ, UjZ, Sij is a finite union of sets in S and thus belongs to S. Finally, suppose that
A = U, Sk with {Sp}m, € S. Then A® = (L, S¢ = N, Ui, Th,e with each Ty, € S. By the
distributivity property of intersections over unions, AC is a finite union of finite intersections of sets in S
and thus belongs to S. O

Example 3.9. Suppose I is an infinite set. Then A = {A C T : A or AY is finite} is an algebra. To check
that this is the case, we first observe that () is finite and so belongs to A. Next, A € A implies A = (A¢)¢
or A is finite; in either case A® € A. Finally if A, B € A, either A and B are both finite, so AU B is finite,
or at least one of A, B has a finite complement, so (AU B)¢ = A“ N B¢ C A® B is finite.

A is not necessarily a o-algebra, though. For instance, if I' = Nand Ay, = {2k} € A, then |J;_, Ax = 2N ¢ A.

Definition. A (probability) premeasure on an algebra A is a function P : A — [0,1] satisfying P(0)) =
P(Q) = 1, and for any countable disjoint collection {4;};c; C A such that Llicr Ai € A, P( A)

Zie[ ﬁ(AZ)

Note that since A is only an algebra, the union of an infinite collection of sets in A need not belong to A;
we just want to ensure that our premeasure is countably additive in those cases where it does.

Also, algebras are closed under complements and finite unions/intersections so nonnegativity and the count-
able additivity condition implies that premeasures are monotone and countably subadditive (when applicable)

by the arguments in Theorem 2.1.

Proposition 3.10. Suppose Py is a protomeasure on the semialgebra S and S is the algebra generated by S.
Define the set function P on A by P (L, Si) = >0, Po(Si). Then P is a premeasure on S with P|ls = P,.

Proof. To see that P is well-defined, suppose that A = | |*, S; € A can also be written as A = L= R
Then S; = S;NA=5;N (I_l?:l RJ) = |_|;L:1(SZ n RJ) with S; N Rj € §. Similarly, Rj = |_|;11(SZ n Rj), SO
finite additivity of Py gives

3

Py |_| (S:N R)) iZPo Si N R;)

1 j=1 i=1 j=1

> Ry(SinRy) ZPO <|_|(Sij)> :ZPO(Rj).

]
,o?
0
NgE

i=1 %

NgE

1i=1

J

Also, P(S) = Py(S) for all S € S by definition, and monotonicity then implies 0 = P(0) < P(A) < P(Q) =1
forall A€ S.
Next, if A1,...,A,, €S are disjoint, then finite additivity of Py shows that, in obvious notation,

13<|_|Ai>:]3 L||;|5i,j = " Py(Sij) =D P(Ay).

i=1j=1

13



Finally, suppose that {4;};en is a countable collection of disjoint sets in S with A = | |,.y4; € S. Since
A = |_|j 1 Sij with S; 5 € S, hence Y,y P(Ai) = > icn Z;l=1 Py(S;,;), we may assume without loss of
generality that each A; € S.

As A = ||}_, Ty with T, € S, countable subadditivity of Py gives Py(T)) = P()(|_|i€N(AZ- N Tk)) <
> ien Po(A; N Ty) and finite additivity of Py gives Py(A4;) = Po (y_1(AiNTk)) = Y op_y Po(Ai N Ty),

thus
ZPO (T3) <ZZPO (A; N'Ty) ZZPO (AinTy) => Py(A;) =Y P(A
=1 =1

k=1 i=1 i=1 k=1
where the 1nterchange of summation is justified by the nonnegativity of Pj.

For the reverse inequality, let B,, = | |"; A; and C,, = AN BS. Then Ay,...,A,,C, € S are disjoint, so
finite additivity of P implies P(A) = P(Ay) +--- 4 P(A,) + P(C,) > P(A;) + - -+ P(Ay,). Letting n — oo
yields P(4) > 2%, P(A;). 0

The next step is to extend our premeasure to a set function defined on all of 2. We will generally lose
countable additivity in the process, but we’ll cross that bridge when we come to it.

Definition. A (probability) outer measure on § is a function P* : 2% — [0, 1] satisfying P*(0)) = 0 and
P*(Q) = 1; P*(A) < P*(B) whenever A C B; and for any countable collection {A;};c; of sets in €,

pP* (UiEI Ai) < Zie[ P*(Ai)'

Proposition 3.11. Suppose that Pisa premeasure on an algebra A and define for each E C )

:inf{iﬁ(/li) :A;e Aand E C GAZ}'
i=1

i=1

Then P* is an outer measure on ).

Proof. Note that we can take A; = @) for ¢ > n, so the infimum includes sums over finite covers as well.
Also, P is nonnegative and every set in 22 is covered by Q, so P* is well-defined with 0 < P*(E) < P(Q) = 1
for all £ C Q.

Now () C 0, and countable subadditivity of P ensures that if Q C Ui2, A4;, then P(Q)
the union is necessarily Q in this case and thus belongs to A. It follows that P*(0)
P*(Q) > ﬁ(Q) =1 as well, hence P* behaves appropriately on {, Q.

Next, if A C B, then any cover of B also covers A, so P*(A) < P*(B).

S0 P(A)—
0) =

<
< ﬁ( 0 and

Finally, let ¢ > 0 and consider any countable collection {A4;}5°,. For each ¢ € N, there’s a countable cover
{Bi;}32, of A; with Y22, P(B; ;) < P*(A;) +¢/2". Tt follows that (J, A; € U2, U2, Bij, hence

P*(DAz) iwﬁ Jgi ;) +e/2] iP*(A,»)—i—s. 0

= =1 i=1

Definition. If P* is an outer measure on €2, we say that A C Q is P*-measurable if for each £ C 2,

P*(E) = P*(ENA)+ P*(En A°).

Note that P* is countably subadditive, so one only needs to check that P*(E) > P*(EN A) 4+ P*(En A%).
14



While this notion of ‘splitting events nicely’ is not super obvious or intuitive, the following Carathéodory

extension theorem shows that it is extremely useful.

Theorem 3.12. If P* is an outer measure on ), then the collection M of P*-measurable sets is a o-algebra

and the restriction of P* to M is a measure.

Proof. ) € M since P*(E) =0+ P*(ENQ) = P*(ENQ) + P*(EN(°), and M is closed under complements

since the definition of P*-measurability is symmetric in A and A®.
Next, if A, B € M and E C (2, subadditivity and AU B = (AN B) U (AN BY) U (AY N B) gives
P*(E) = P*(ENA) + P*(En A%)
= [P*(ENA)NB)+P*(ENA)NB°) +P*((ENA°)nB)| + P*((ENnAY)n BY)
> P*(EN(AUB)) +P*(En(AuUB)%),
thus AU B € M. This shows that M is an algebra, so it remains only to establish closure under countable

unions, which we may assume to be disjoint.

Given any disjoint sequence {4;}:2, in M, define B = | |7~ A; and B,, = | |\, A; for n € N. Then
P*(ENB,)=P(ENB,NA,) +P(ENB,NAS) =P (ENA,)+P(ENB,_).

As P*(ENBy) = P*(EN A;) and P*(EN B,) = Y.", P*(E N 4;) implies
n+1
P*(ENBuy1) = PY(ENAp) + PYENB,) =Y P(ENA),
i=1
it follows from the principle of induction that P*(EN B,,) = > 1, P*(E N A;) for all n.
Since B,, € M and B,, C B, we have

n
P*(E)=P*(ENB,) + P*(ENBJ) >> P*(ENA;)+ P (EnB°),
i=1
so letting n — oo yields

P*(E) > ip*(EmAi) +P*(ENB°) > P* (G(EmAﬁ) + P*(ENBY) = P*(EN B) + P*(En BY).

This shows that B € M,and taking £ = B in the preceding gives

P*( ZP*BHA)+P*BHBC ZP*
=1

so P* is countably additive on M and thus defines a measure. (Il

Proposition 3.13. Ifﬁ is a premeasure on A and P* is the induced outer measure from Proposition 5.11,
then P*(E) = P(E) for all E € A, and every set in A is P*-measurable.

Proof. 1f '€ A and E C U, 4; with each 4; € A, we can define B, = E(] (4, \ U5 A;). Then the
B,’s are disjoint elements of A whose union is E, so, since B,, C A,, P(E) = Y. | P(B,) < S P(A,).

n=1

This shows that P(E) < P*(E), and the reverse inequality is immediate.

To see that A C M, let A € A, E C Q, and € > 0. Then there is a sequence {B, }22, in A with E C |J,_, B

and Y°°°, P(B,) < P*(E) +«.
15



Since P(B,) = P(B, N A) + P(B, N A°) by finite additivity of P, we have

P*(E)+¢> iﬁ(Bn) = iﬁ(Bn NA)+ i?(Bn NAS) > P*(ENA) + P*(En A9).

n=1 n=1

As e was arbitrary, A is P*-measurable. |

It took some work, but we have finally arrived at our goal! Though there were a lot of details to attend to,
the basic idea was pretty easy:

Start with a reasonable set function that behaves as you intend on a manageable collection of sets (protomea-
sure on a semialgebra); extend it in the obvious way to a slightly larger collection with an eye to countable
additivity (premeasure on the generated algebra); use this to define an ‘approximate measure’ on all of 2
(the induced outer measure); and then restrict this to get a genuine measure on a c-algebra containing all
the sets you started out with.

Theorem 3.14. If Py is a protomeasure on a semialgebra S, then there is a unique measure P on o(S)
such that P(S) = Py(S) for all S € S.

Proof. Extend Py to S as in Proposition 3.10 to get a premeasure Pon S that agrees with Py on S. Then
extend this to the outer measure P* defined in Proposition 3.11. The collection M of P* measurable sets
is a o-algebra containing S (and thus S and thus o(S)) with P*(S) = P(S) = Py(S) for all S € S. As P*
defines a measure on M, P = P*|,(s) is as asserted.

For uniqueness, suppose that @ is another measure on o(S) with Q(S) = Py(S) for all S € S. Since S is a
T-system and, arguing as in Example 2.7, £ = {E : P(E) = Q(E)} is a A-system containing S, Theorem
2.6 ensures that o(S) C L—that is, P(E) = Q(FE) for all E € o(S). O

Observe that the Carathéodory construction actually gave us a measure P on M that extends Py. In general,
M will be larger than o(S).

To see this, we first note that if A € M has the property that P*(A4) = 0, then for any F C Q we have
P*(E) < P*(ENA)+ P*(ENAY) < P*(A) + P*(E) = P*(E),

so M contains all sets with outer measure 0.

Since P* is monotone, this shows that if B € M is a null set (so P(B) =0) and A C B, then A € M.

Definition. A measure P whose domain contains all subsets of null sets is said to be complete.

Theorem 3.15. Suppose (2, F, P) is a probability space and define N' = {N € F: P(N) = 0}, F =
{E UF: EeFand F CN for some N € N} Then F is a o-algebra and there is a unique extension P

of P that defines a complete measure on F.

Proof. Since F and N are closed under countable unions, so is F. Now suppose that EU F € F, with
F C N € N. We can assume that £ N N = (—otherwise, replace F and N with F'\ F and N \ E.

Then EUF = (EUN)N (FUNC) sincex € EUF implies x € F C (EUN),(FUN® orz € E C
(EUN),(FUN®), and every z € (EUN) N (FUNY) is either in N and thus in F or in N¢ and thus in
E. This means that (EU F)¢ = (EUN) U (FUNYY = (EUN)Y U (N \ F) with (EUN)® € F and

N\ FCN €N. Thus F is closed under complements as well.
16



Now given E € F, F C N € N, define P(EU F) = P(E). This is well-defined because if E1 U F; = E; U I
with Ez € F and Fz Q Nl GN, then E1 Q EQUNQ and E2 Q E1UN1, SO P(El) S P(E2)+P(N2) = P(EQ)
and P(E,;) < P(Ey) + P(N,) = P(E;). P is complete because every ' C N € N can be written as

F=0UF € F (and we have P(F) = P(}})) = 0).
If Q is any other measure on F that agrees with P on F, then for each EU F € F with F C N € N,

QEUF) <Q(E)+Q(F) = P(E) + Q(F) < P(E) + Q(N) = P(E) = P(EUF)

and

P(EUF) = P(E) = Q(E) < Q(E) + Q(F \ E) = Q(E U F). =

In light of the preceding, we can upgrade our extension theorem so that it gives a complete measure on o(S).

This is often convenient, and we will feel free to do so when it is.

For example, the (infinite) measure m on the Borel o-field generated from the protomeasure po((a,b]) = b—a
on the semialgebra H is called the Lebesgue measure on B. Its completion gives the Lebesgue o-algebra

L:=B.

As the Cantor set K is null with respect to Lebesgue measure, every one of its subsets belongs to £. Since
K is uncountable, this produces more Lebesgue sets than the cardinality of the continuum.

However, one can show that |B| = |R|, so £ is indeed much bigger.

(Basically, one starts with a nice generating set like By = {(a7 b) : a,b € Q}, then takes all complements
and countable unions/intersections to get the larger set B;. Then one takes complements and countable
unions/intersections of these sets to get By, and so forth. However, one must perform this recursion over all
countable ordinals to eventually arrive at B, so the argument involves transfinite induction.)

For the purposes of this class, we can get all the measures on Borel/Lebesgue sets that we need by looking

at protomeasures arising from distribution functions on the semialgebra of h-intervals.

One nice thing about these measures is that they are inner and outer regular in the sense that for all £ € L,
P(E)=sup{P(K): K C F and K is compact}
=inf{P(U): ECU and U is open}.

The proof is not too difficult, but in the interest of time, we leave it to independent pursuit.

Example 3.16. If E C R is countable and p : R — [0, 1] satisfies Y. .5 p(w) =1 and p(w) = 0 for w € EY,
one can check that F'(z) = >° . p(w) is a probability distribution function and thus defines a protomeasure
on H which extends to the measure P on B defined by P(A) = > . ,p(w). (These sums are well-defined

since p vanishes outside of a countable set.) This takes care of all of the discrete distributions on R.

Example 3.17. If f : R — [0,00) is integrable with [~ f(z)dz = 1, then F(z) = [*_ f(t)dt is easily
seen to be a probability distribution function and thus defines a protomeasure pg on H which extends to a
measure p on B = o(H) with the property that p((a,b]) = f: f(z)dx for all —co < a < b < oo. These are

precisely the absolutely continuous distributions on R that you studied in undergraduate probability.
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Example 3.18. Define F : R — [0,00) by F(z) =0forz <0, F(z) =1forz > 1, F(z) = 1 for £ <z < 2,

F(z)=1%for § <x <2 F(z) =3 for { <z < ¥, and, in general, for z in a closed middle third from the

Cantor construction, let F'(x) be the average value of F' at the endpoints of the interval from which it was

removed as defined in the previous step.

(More concretely but less intuitively, suppose x € [0,1] has ternary expansion z = Y °., 2=, Define N =

n=1 3n
inf{n : a, =1} € NU{oco} and set b, = %4+ for n < N, by = 1 if N < 0o. Then F(x):EnNZI ba)

This is called the devil’s staircase and it is not too hard to show that it is a distribution function. However,
for every x in the complement of the Cantor set, F' is differentiable with F’(x) = 0, so it does not arise as
the integral of any f : R — [0, 00).

In a sense, these are all of the cases that can arise.

Definition. A measure y on (R, B) is said to be discrete if there is a countable set £ C R with u(E¢) = 0.
wis continuous if p{x} =0 for all z € R.

Proposition 3.19. Any finite Borel measure can be uniquely decomposed as pn = pig+ pi. where pg is discrete

and L 18 continuous.

Proof. Let A = {z € R: p{z} > 0}. For any countable B C A, > _pu{z} = p(B) < oo by countable
additivity and finiteness.

Therefore, Ay = {z € R : p{z} > k~'} is finite for all k € N, hence A = |J;—, Ay, is a countable union of

finite sets and thus countable.

The result follows by defining pq(F) = u(E N A), u(E) = u(E N A°). O

Definition. If ;1 and v are measures on (5,G), then we say that v is absolutely continuous with respect to
w (and write v < p) if v(A) =0 for all A € G with u(A) = 0.

We say that p and v are mutually singular (and write plv) if there exist E, F € G such that ENF = (),
EUF =S,and u(F)=0=v(E).

The Lebesgue-Radon-Nikodym theorem shows that if p and v are o-finite measures, then v = p + A with
p <<, AlLp.

(Moreover, there is a function f : @ — [0,00) such that p(A) = [, fdu for all A € F. If ;i is Lebesgue
measure on R, then for all practical purposes, this is just the usual Riemann integral [ 4 f(x)dzx.)

Thus we can first decompose any Borel probability measure as P = uq+ . with pg discrete and p. continuous.

Then we write p, = e + phse With pge absolutely continuous with respect to Lebesgue measure and g,

singular with respect to Lebesgue measure.

It follows that every Borel probability measure can be written as a convex combination of discrete, absolutely

continuous, and singular continuous probability measures.
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4 RANDOM VARIABLES

Having carefully constructed a rich set of probability spaces in the previous section, we will typically just
take it as given going forward that there is an underlying space (2, F, P) on which we are working.

Our next task is to enrich this basic framework by introducing a few more fundamental constructs.

Definition. A (real-valued) random variable on a probability space (2, F, P) is a function X : Q@ — R such
that for all E € B, X~}(E) € F.

Example 4.1. For any ¢ € R, the constant function X = c is a random variable since for each A € B,
X1 A)=Qifce Aand X 1(A) =0 if c ¢ A, both of which belong to F.
Likewise, if E € F, then X = 1p is a random variable since for every A € B, X~1(A) € {0, A, A, Q}

depending on whether A contains 0, 1, neither, or both.

In general, if (S,G) is a measurable space (so G is a o-field over S), a map X : Q@ — S is measurable if
X~Y@Q) € F for all G € G, and we say that X is an (S, G)-valued random variable. If the target o-field is
understood, we often employ the slight abuse of notation X € F to indicate that X is /-G measurable.

Theorem 4.2. If A generates G (in the sense that G is the smallest o-algebra containing A) and
XYA) e F forall Ac A, then X is an (S, G)-valued random variable.

Proof. Because X' (U, E;) = U; X Y(E;) and X ' (E°) = XY (E), E={ECS: X Y(E)e F}isa
o-algebra. Thus, since A C £ and A generates G, G C &, hence X is measurable. a

The fact that inverses commute with set operations also shows that for any map X : Q@ — S, if G is a
o-algebra on S, then o(X) = {X~1(FE) : E € G} is a o-algebra on Q (called the o-algebra generated by X).

By construction, it’s the smallest o-algebra on €2 that makes X an (5, G)-valued random variable.
We will mostly be concerned with the case (S,G) = (R, B), but abstract definitions can be easier to work
with since they tend to push extraneous details into the background.

Also, even if the focus is primarily on R-valued random variables, it is often convenient to consider random
vectors when stating and proving theorems. This corresponds to the case (S, G) = (R?, B?), where the Borel
o-field on R? is generated, for example, by R = {(al,bl] X oo X (ag,bg] : —00 < a; < b; < oo}; see the

appendix for a careful proof.

Proposition 4.3. If f : R® — R™ is continuous, then f is B"-B™ measurable.

Proof. Continuity means that f~!(U) is open in R™ for every open set U € R™. Since every open subset of

R™ is contained in B™ and the open subsets of R generate B™, the assertion follows from Theorem 4.2.

(The same proof works for continuous maps between arbitrary topological spaces equipped with their Borel
o-fields.) O

Proposition 4.4. If (S1,G1),(S2,G2),(S3,G3) are measurable spaces and f : S; — Sa, g : So — S3 are
measurable maps, then go f : S1 — S3 is measurable.

Proof. Given any G € G3, measurability of g ensures that ¢~!(G) € G, so measurability of f implies
(go f)"HG) =g (@) € G O
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Corollary 4.5. If f : R — R is continuous and X is a random variable, then Y = f(X) is a random

variable as well.

Theorem 4.6. If X1, ..., X, are R-valued random variables, then so are S, = ;_; Xj, and V,, = [T}, Xk.

Proof. We first observe that the map X : Q — R given by X(w) = (X;1(w),..., X,(w)) is measurable.

Indeed, B? is generated by rectangles of the form (a1,b1] x - -+ x (ag4, bg] and
Xﬁl((alabl] Xoeee X (advbdD = {w €eN: (Xl(w)’ . ;Xn(w)) € (alabl] X X (adabd]} = ﬂ Xk;_l((alwbk})?
k=1

which is a finite intersection of sets in F (since each X} is measurable) and thus belongs to F.

Next, we note that the maps f : R® — R and g : R* — R defined by f((z1,...,2,)) = 21 + -+ 2, and
9((z1,...,2p)) = 21+ x, are continuous and thus measurable by Proposition 4.3.

(The projection functions mx(x) = xy are continuous for each k, so f can be expressed as a sum of continuous
functions and g as a product.)

Therefore, S, = f(X) and V,, = ¢(X) are compositions of measurable functions, and the claim follows from

Proposition 4.4. O

Remark 4.7. Note that if X is measurable with respect to F and Fis any o-field containing F, then X is
automatically measurable with respect to F. In particular, we can always consider the completion of the
source o-field.

However, enlarging the target o-field provides more opportunities for maps to fail to be measurable. For
example, one can construct continuous functions from R to R that are not £-£ measurable. Similarly, if
f:(R,E) — (S,F1) and g : (S, F2) — (T,G) are measurable, go f : (R,€) — (T,G) need not be unless
Fo C F1. This is why we use the Borel rather than Lebesgue o-algebra in our definition of R-valued random

variables.

It is sometimes convenient to allow random variables to assume the values oo, and we observe that almost
all of our results generalize easily to (R*, B*) where R* = RU {+o0} and B* = {E C R: ENR € B}, which

is generated, for example, by rays of the form [—oo,a) with a € R.

Theorem 4.8. If X1, X5, ... are random variables, then so are

inlf\IXn, sup X, liminfX,,, limsupX,.
ne

neN n—00 n— 00

Proof. For any a € R, the infimum of a sequence is strictly less than a if and only if some term is strictly

less than a, hence

{érengn<a} =J{Xn<a}eF
neN
Since {[—00,a) : a € R} generates B*, we conclude that inf, ey X, is measurable.

To see that sup,,cy X5, is a random variable, note that sup,, .y X, = —inf,ey — X, and  — —x is measurable.
Arguing as in the first case, inf,,>, X, is measurable for all m € N, so it follows from the second case that
liminf X,, = sup ( inf Xm>

n—00 neN \m2>n

is a random variable. The lim sup case is similar. O
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It follows from Theorem 4.8 that
{ lim X, exists} = {limiann = limsuan} = {limiann — limsup X,, = O}
n— 00 n— 00 n—oo n— 00 n—oo

is measurable since it is the preimage of {0} € B under the map (liminf, o, X,,) — (limsup,, ,., X»), which

is the difference of measurable functions and thus measurable.

When P {lim,,_,~ X,, exists} = 1, we say that the sequence { X, } converges almost surely to X := limsupX,,
n—oo
and write X,, — X a.s.

Distributions

Every random variable induces a probability measure p on R (called its distribution) by
u(A) =P (X7(4))

for all A € B.

To check that p is a probability measure, note that since X is a function, if A1, Ao, ... € B are disjoint, then
so are {X € A1}, {X € As},... € F, hence

pUA) = PUX e U A}) = P(UAX € A}) =Y PIX € A4} =) u(A).
i i
The distribution of a random variable X is usually described in terms of its distribution function
F(z) = P(X < 1) = p((~00,a]).
In cases where confusion may arise, we will emphasize dependence on the random variable using subscripts—

i.e. X, Fx.

Theorem 4.9. If F is the distribution function of a random variable X, then

(1) F is nondecreasing

(i) F is right-continuous (so lim,_,,+ F'(z) = F(a) for all a € R)

(iii) lim, o F(z) =0 and lim,_,o F(z) =1

(iv) If F(z~) = lim,_,,- F(y), then F(z7) = P(X <)

(v) P(X=x)=F(z)— F(z7)

Proof.

For (i), if z <y, then {X <z} C {X <y}, so F(z) = P(X <z) < P(X <y) = F(y) by monotonicity.

ii), observe that if z N\, a, then {X <z} N\, {X < a}, and apply continuity from above.

(
(

For (iii), we have {X <z} \ 0 as z \( —o0 and {X <z} ~Rasz ~oo.

For (iv), {X <y} "{X <z} as y /' z. (Note that the limit exists since F' is monotone.)
(

For (v), {X =z} ={X <z} \{X < z}. O
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It is perhaps worth observing that if D is the set of discontinuity points of a distribution function F', then
monotonicity and right-continuity ensure that {(F(d~),F(d)) : d € D} is a collection of disjoint open

intervals. As each must contain a rational number, D is necessarily countable.

Theorem 4.10. If F : R — R satisfies properties (i), (ii), and (iii) from Theorem 4.9, then it is the

distribution function of some random variable.
Proof. Let Q = (0,1), F = B(o,1), P = Lebesgue measure, and define X : (0,1) — R by
X(w)=FYw):=inf{y eR: Fy) >w}.

Note that properties (i) and (iii) ensure that X is well-defined.
To see that F is indeed the distribution function of X, it suffices to show that

{w:Xw) <z} ={w:w< F(z)}
for all x € R, as this implies
PX<z)=Plw:X(w) <z} =P{w:w<F(z)} =F(z
where the final equality uses the definition of Lebesgue measure and the fact that F(x) € [0, 1].

Now if w < F(z), then z € {y e R: F(y) > w}, s0o X(w) =inf {y e R: F(y) > w} < x.

This shows that {w:w < F(z)} € {w: X (w) < z}.

To establish the reverse inclusion, observe that if w > F'(x), then properties (i) and (ii) imply that there is
an £ > 0 such that F(z) < F(z +¢) <

Since F' is nondecreasing, = + ¢ is a lower bound for {y eR:F(y w} hence X (w) >z +¢ > x.
Therefore, {w: w < F(x } Clw: X(w) < x} and thus {w: X(w) <z} C{w:w < F(2)}. O

Theorem 4.10 shows that any function satisfying properties (i) - (iii) gives rise to a random variable X, and

thus to a probability measure p, the distribution of X.

Example 2.7 shows that this measure is uniquely determined—that is, if two random variables have the same

distribution function, then they have the same distribution.

To summarize, every random variable induces a probability measure on (R, B), every probability measure
defines a function satisfying properties (i)-(iii) in Theorem 4.9, and every such function uniquely determines

a probability measure.

Consequently, it is equivalent to give the distribution or the distribution function of a random variable.
However, one should be aware that distributions/distribution functions do not determine random variables,
even neglecting differences on null sets.

Definition. If X and Y are defined on a common probability space and P(X =Y) =1, we say that X =Y

almost surely (or a.s. for short).

Definition. When two random variables X and Y have the same distribution function, we say that they

are equal in distribution and write X =5 Y.

22



If X =Y as., then X =; Y since for any F € B,
ux(E)=P(X e E X=Y)+P(XeE,X#Y)=PXeE X=Y)
=PYeEX=Y)=PY€e€E,X=Y)+PYe€EX#Y)=yuy(E)

where the commas denote intersections of events.

The converse is not true though. For example, if X is uniform on [—1,1]—so ux = %m|[_1,1]—then —X also
has distribution pux, but —X # X a.s.

Moreover, random variables can be equal in distribution even if they are defined on different probability

spaces.
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5 INDEPENDENCE

Another fundamental concept in probability theory is independence. Heuristically, two objects are indepen-
dent if information concerning one of them does not contribute to one’s knowledge about the other.

In order to motivate a general and rigorous formulation of this notion, it’s helpful to first recall the classical
notion of conditional probability.

(A more sophisticated version involves conditioning on sub-o-fields and replacing probabilities with random
variables, but we’ll have to wait a while to be able to develop that approach.)

Suppose that we have a reasonable model of some experiment, encoded by the probability space (2, F, P),
and then somehow became convinced that the experiment will result in an outcome belonging to F' € F.
For reasons that will soon become clear, let us suppose moreover that P(F') > 0. How should we go about

updating our model to account for this additional information?

One way to proceed would be to collapse our sample space to F, restrict our o-field to {E NF: FEe .7-'},
and normalize our probability measure so that F' is assigned probability 1. Effectively, this will result in
the same definition we are about to derive, but in fact, it is sufficient (and desirable from the perspective of

extending probability spaces, etc.) to retain (2, F) and only modify P.

Let’s denote the updated probability measure by Pr. Other than satisfying the definition of a probability

on (£, F), it is natural to require that

(1) Prp(F) =1 (since we know that F' occurs)
(2) For any events A, B € F with A,B C F and P(B) > 0, Pr(A)/Pp(B) = P(A)/P(B) (since we have
learned nothing about the relative probabilities of A and B)

Since 1 = Pp(Q) = Pp(F) + Pr(F°) = 1+ Pp(F®), we must have that Pr(F®) = 0 and thus Pr(G) =0
for any G C F'© by monotonicity.
It follows that for any E € F,

Pr(ENF) P(ENF)

Pp(E) = Pr(ENF)+ Ppr(ENFY) = Pr(ENF) = BelF) = B

It is a simple exercise to check that this definition of Pr does indeed give a valid probability on (£, F).

Now if knowledge of the occurrence of F' was completely uninformative about the probability we should

assign to E, then we would have P(E) = Pp(E) = ngggf), hence P(ENF) = P(E)P(F).

It turns out that this product formulation of independence is the right choice since it is simple to work with,

generalizes nicely, and sidesteps the problem of potential division by O.

Formally, let us say that

e Two events A and B are independent if P(AN B) = P(A)P(B).

e Two random variables X and Y are independent it P(X € E|Y € F) = P(X € E)P(Y € F) for all
E,F € B. (That is, if the events {X € E} and {Y € F'} are independent.)

e Two sub-o-fields F;, and F;, are independent if for all A € F;, B € Fy, the events A and B are

independent.
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Observe that if A € F has P(A) =0 or P(A) = 1, then A is independent of every B € F.

This also implies that if X is a.s. constant, then X is independent of every Y € F and that {0,Q} is
independent of every sub-o-field.

This is all well and good so far, but we immediately run into problems if we try to naively extend these

multiplication rules to more than two events/random variables/sub-o-fields.

For instance, if A, B, C are events with P(ANB) # P(A)P(B) and P(C) = 0, then we have P(ANBN(C) =
0= P(A)P(B)P(C), but it wouldn’t make sense to say that {A, B, C} is an independent collection of events

since A and B are dependent.

On the other hand, just because any pair of events in a collection is independent, it does not follow that the
entire collection should be regarded as such. As an example, consider the experiment where two fair coins are
flipped and set A = {1st coin heads}, B = {2nd coin heads}, C' = {both coins same}. It’s straightforward
to check that P(ANB) = P(ANC) = P(BNC) = i = P(A)P(B) = P(A)P(C) = P(B)P(C), but
P(ANBNC) = i #* % = P(A)P(B)P(C).

As such, we say that an infinite collection of objects is independent if every finite subcollection is, where

e Events Ay, ..., A, € F are independent if for any I C [n], we have
P( N Al) =[] P).
iel il
e Random variables X1, ..., X,, € F are independent if for any choice of E; € B;, i =1, ...,n, we have

P(X, € By, ..., X, € E,) = [[ P(X;i € Ey).

=1

e Sub-o-fields Fi, ..., F,, are independent if for any choice of A; € F;, i =1,...,n, we have
P( N Al-) =[] P4)).
i=1 i=1

Note that o-algebras and random variables are implicitly subject to the same subcollection constraint as

events since special cases of the definition include taking A; = Q, F; = R for i € I€.

One can show that independence of events is a special case of independence of random variables (via indica-

tors), which in turn is a special case of independence of sub-o-fields (via the generated o-fields).

We will take as our running definition of independence, the further generalization:

Definition. Given a probability space (Q, F, P), collections of events Cy,...,C,, C F are independent if for

all I C [n],
P(ﬂAZ) =[P4
iel i€l

whenever A; € C; for each i € I.

An infinite collection of subsets of F is independent if every finite subcollection is.

Note that if Cy, ...,C, are independent and we set C; = C; U {Q}, then Cy, ...,C, are independent as well. In
this case, the independence criterion reduces to P( Ny A,») = [Ii-, P(A;) for any choice of 4; € C;.
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These definitions seem to require us to check an impractical number of cases to determine whether a given

collection of objects is independent. The following results are useful for simplifying this task.

Theorem 5.1. Suppose that Cq,...,C,, are independent collections of events. If each C; is a w-system, then

the sub-o-algebras o(Cy),...,0(Cp) are independent.

Proof. Because (2 is independent of every event and o(C;) = o(C;), we can assume without loss of generality

that Q € C; for all ¢ so that we need only consider intersections/products over [n].

Let As, ..., A, be events with 4; € C;, set F =\, A;, and set L={A € F: P(ANF) = P(A)P(F)}.
Since P(QN F) = P(F) = P(Q)P(F), we have that Q € L.

Now suppose that A, B € £ with A C B. Then

P((B\A)NF)=P((BNF)\(ANF)) = P(BNF) - P(ANF)
= P(B)P(F) — P(A)P(F) = (P(B) — P(A)) P(F) = P(B\ A)P(F),

hence (B\ A) € L.
Finally, let By, Ba, ... € £ with B,, /* B. Then (B, N F) / (BNF), so

P(BNF) = lim P(B,NF)= lim P(B,)P(F)= P(B)P(F),

n—oo n—oo
so B € L as well.
Therefore, L is a A\-system, so, since C; is a w-system contained in £ by assumption, the 7-A Theorem shows
that o(Cy) C L.
Because As, ..., A,, were arbitrary members of Cs, ...,C,, we conclude that o(Cy),Cs,...,C, are independent.

Repeating this argument for Cs,Cs, ...,Cy, 0(C1) shows that o(Cs),Cs, ...,Cp, 0(Cy) are independent, and n — 2
more iterations completes the proof. O

Corollary 5.2. Random wvariables X1, ..., X,, are independent if

P(X:<zy,..X, <x,) = HP(Xi <) for all zy,...,z, € R.
i=1

Proof. Let C; = {{X; <z}:z€R}fori=1,..,n.
Since {X; < 2} N{X; <y} = {X; <z Ay}, the C;’s are w-systems, so o(Cy),...,0(Cy) are independent by
Theorem 5.1.

Because {(—o0, ] : x € R} generates B, o(C;) = o(X;), and the result follows. O

Since the converse of Corollary 5.2 is true by definition, independence of random variables Xi,..., X, is

equivalent to the condition that their joint cdf factors as a product of the marginals cdfs.

One can prove analogous results for density and mass functions using the same basic ideas.

If X4, ..., X, are independent random variables and fi, ..., f, : R — R are measurable, then f(X;),..., f(X,)
are independent random variables since for any choice of B; € B;,

P(fl(Xz) € Bla 7fn(Xn) € Bn) =P (Xl € fl_l(Bl)a'--aXn € f;l(Bn))

=[P (xiesitB)) =] P(r(xi) € By).
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With the help of Theorem 5.1, we can prove the stronger result that functions of disjoint sets of independent

random variables are independent.

Lemma 5.3. Suppose F;;, 1 < i < n, 1 < j < m(i), are independent sub-c-algebras and let G; =
o (UJ .7-'1-1]-). Then G, ...,G, are independent.

Proof. Let C; = {ﬂj AijiAij € ]'—i,j}-

If(; Aij.N; Bi,j € Ci, then (ﬂj Ai,j) N (ﬂj B,'J) =, (4i; N B ;) € C;, s0 C; is a m-system and Theorem
5.1 guarantees that o(Cy), ...,0(C,) are independent.

Because F' € Uj]'—i,j implies F' € F; i, for some k and thus F =QN---NQANFN2AN---NQ e C;, we have
that Uj FijCCis0G; =0 (UJ .E,j) C 0(C;). Consequently, Gy, ..., G, are independent. O

Corollary 5.4. If X; ;, 1 < i <n, 1< j < m(i), are independent random variables and the functions
fi : R™D 5 R are measurable, then J1( X115 00 X))y oo Jn( X5 oo Xpim(n)) are independent.

Proof. Let F;j = 0(X;;). Since fi(Xi1,..., Xim()) is measurable with respect to G; = o (U] fi,]‘), the
result follows from Lemma 5.3. O
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6 EXPECTATION

Random variables often enable us to summarize or simplify probability experiments by attaching a single

real number to each outcome.

In many cases we can obtain a further useful reduction by distilling the random variable down to a fixed
number that represents our ‘best guess’ for the value it takes. This notion of typicality or centrality is

formally encoded in terms of the random variable’s expected value (or expectation).

If X is a discrete random variable (so its range is countable), we can encode its distribution via the probability
mass function px(x) = P(X = x). In this case, the expectation is just the probability-weighted average of
the values it takes, E[X] =" _pzpx(z).

Since all summands are nonnegative and only countably many are nonzero, this sum is well-defined. If we
further assume that €2 itself is countable, this is equivalent to E[X]| = .o X (w)P{w}.

In undergraduate probability, this is generalized to the case where X is absolutely continuous (so there is
a function fx : R — [0,00), called the probability density function of X, such that Fx(z) = P(X < z) =
[* . fx(t)dt) by declaring that E[X] = [z fx(z)dx.

The intuition is that integrals are the continuous version of sums. To flesh out this line of reasoning, observe
that if fx is continuous, then P(z — 5 < X <z +35) = f;f;/; fx(t)dt = efx(z) for € > 0 sufficiently small,
so the density function is playing a similar role to the mass function.

If we also have that X € [a,b] a.s., then we can imitate the definition of expectation for discrete random
variables by taking a tagged partition a = zo < t; < 1 < - <z < t, < z, = b and forming the
sum Y, e P(rp—1 < X < ) &~ D7 tefx(tk)(xr — xk—1), which will converge to fab zfx(x)dr as the
mesh of the partition tends to 0. If X is unbounded, taking a — —oco0, b — oo gives E[X] = ffooo zfx(z)dx

whenever the improper integral converges.

For general X, we could play the same game by defining F[X] as the limit as maxj<g<n(zx — 5—1) — 0 of

Ztkp(l‘k—1 <X <uazy) = Ztk[Fx(xk) — Fx(zk-1)]
k=1 =1

This gives the expectation of X as the Riemann-Stieltjes integral of z with respect to Fix. Of course, there

are a lot of details to attend to if we want to make it rigorous.

Rather than pursue this approach, we will consider a theory of expectation/integration that is better suited
to proving general theorems, taking limits, and accommodating a larger class of integrands. The key idea is

to partition the codomain rather than the domain when approximating the integral by a sum.

Definition. If X is a real-valued random variable defined on a probability space (€2, F, P), we define E[X] =
Jo X (w) dP(w) (or just [ X dP for short), provided this integral exists in R*.

To construct the above integral, we first consider the case where X is the indicator of some A € F. Since
X (w) =14(w) equals 1 on A and 0 on A€, it’s natural to define [ X dP = P(A).

Next, we extend this to linear combinations of indicators in the obvious way. That is, if X = ZZ=1 2rla,,
we would like to say that [ X dP =3, _, z,P(Ay).
However, such representations are not necessarily unique (e.g. 214 = %1,4 + %1,4 and 1oy + 215y =

Liapy + 1{p}), so we need to be careful.
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To this end, we say that X is simple if there is a finite partition of the sample space Q@ = | |;_; Ay and real

numbers x1,...,x, such that X = ZZ=1 rrla,.
Equivalently, X is simple if Range(X) = {X(w) : w € Q} is finite because if Range(X) ={r1,...,2,}, we
have the canonical representation X = Zk 1 Trla, where Ay = {w €N: X(w) = xk}

Example 6.1. It’s easy to check that for any disjoint events A, B € F, 14,3 = 14 + 15, and for any events
A,BeF,lanp =14lp.

It follows that if X = Z L xjla, and Y =Y yplp, are simple, then so are X +Y and XY

Indeed, we can write A; = | |;_,(A; N B;) and By, = |_| 1(A; N Bj), so that Q@ = [ |; 1yepm)xn)(Ai N Br),

m n n m m n
X+Y = Z%‘Zlmm + Z?/kzlAmBk = ZZ T+ yr)la;nBys
j=1 k=1 k=1 j=1

j=1k=1
and
m n m n m n
>_ala, (Zyﬂm) D2 wylale =D > wivklans,.
j=1 k=1 j=1k=1 j=1k=1

(Of course this also follows from the finite range characterization of simple functions.)

Now for a simple random variable X = Y7, 2314,, we define [ X dP =3} x,P(Ay).

Even with the requirement that the constituent events partition the sample space, there may still be many

ways to express a simple function. For instance, 1g = 14 + 1 4¢ for any A € F.

However, by appealing to the aforementioned canonical representation, we see that E;"Zl ajla, = 22:1 brlp,
implies > 7, a; P(A;) = 37;_, by P(By). (Just union together any events having the same weights.)

Example 6.2. Let (92, F, P) be Lebesgue measure on [0, 1] and consider the simple random variables

2, weQ
2, w<1/3 4, w=1/V2
X(w) = / , Y(w)= / L Z=c
5 w>1/3 6, w¢Quw<z
8, else

One readily checks that E[X] =2-145-2 =4, E[Y] =2-0+4-0+6-3+8-3 = L2 and E[Z] = Elcl ] = ¢

)

wN

Proposition 6.3. If X =37 z;1a; and Y = 37, ylp, are simple, then ElaX +bY] = aE[X]+bE[Y]
for any a,b € R.

Proof. Arguing as in Example 6.1 shows that

ElaX +bY] = ZZakarbyk P(A; N By)
j=1k=1

faZkaPA N By) +bekZPA N By)
j=1

= azka(Aj) +bekP(Bk) = aE[X] + bE[Y]. 0
)= k=1
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An immediate corollary is that E[Y ;_, zxla,] = > p_, zxP(Ag) for any collection of sets {Ax}7_,, regard-

less of whether they partition the sample space, just as we had hoped for originally.

Linearity also shows that expectation/integration is monotone for simple random variables: If X (w) <Y (w)
for all w € Q, then Y — X is a nonnegative simple random variable, so E[Y]| — E[X] = E[Y — X] > 0.

It follows that if X is a simple random variable, then E[X] = max { E[Y]: Y is simple with ¥ < X }.
This suggests a means of extending our definition of expectation to nonnegative random variables. Namely,

if X > 0, we declare that
E[X]=sup{E[Y]: Y is simple with Y < X }.

This is well-defined, though possibly infinite, and it does agree with our previous definitions in the event

that X is simple. Moreover, monotonicity is baked right into the definition.
The following result shows that we can approximate nonnegative random variable from below by simple

random variables, providing a more concrete way of understanding the supremum.

Theorem 6.4. If X is a nonnegative random variable, then there is a sequence {X,,}°2 ; of simple functions
with 0 < X7 < Xo < ... < X such that X,, — X pointwise, and the convergence is uniform on any set on
which X is bounded.

Proof. For n=1,2,... and k =0,1,...,4™ — 1, define

Apgp = X1 << K k“]) and A, = X1 ((2",09]),

on’ 9n
and set
a1y
X, = Z 271AM +2M 4, .
k=0
By construction, 0 < X — X,, < 27" on A = {w: X(w) < 2"} \, 0, and the result follows. O

In order to leverage the preceding, we need to be able to pass limits through integrals. For this, we appeal

to the following monotone convergence theorem.

Theorem 6.5. If X; < X, < --- are nonnegative random variables converging pointwise to X, then
lim F[X,] = E[X].
n—oo

Proof. X is a random variable by Theorem 4.8, and monotonicity ensures E[X;] < E[X3] < --- < E[X],
hence lim,,_, o F[X,] exists in R* and is bounded above by E[X].

As such, we need only show that lim, ., F[X,] > E[X]. According to our definition of expectation of
nonnegative random variables, this will follow upon demonstrating that lim, . E[X,] > E[Y] for any
simple Y < X.

Let Y = ZZL:l yr1a, be bounded above by X, choose € > 0, and set Ay, = {w €Ap: Xp(w) > yg — 5}.
Then E[X,] > Y7"  (yx — €)P(Ay.), and since Ay, /7 Ay as n — oo, continuity from below gives

lim B[X,] > lim 3 (g — ) P(Ai) = (i — ) P(A) = E[Y] — ¢
k=1 k=1

completing the proof. O
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By construction, expectation is unchanged if we modify a random variable on an event having probability

0, so one can weaken the assumption to X,, X a.s. in the monotone convergence theorem.

Also, once we extend our definition to general random variables, we can weaken the nonnegativity condition
to E[X;] > —oo by applying Theorem 6.5 0 < X,, — X; X — X;. (If E[X;1] = o0, then E[X] = c0.)
Similarly, replacing X,,, X with —X,,, —X, we see that if F[X;] < oo and X,, \, X a.s., then E[X,] — E[X].
However, monotonicity of some sort is important. For instance, if (2, F, P) is Lebesgue measure on [0, 1],

then X,,(w) = nlg 1)(w) — 0 for all w, but E[X,] =1 for all n.

As an example of the MCT in action, we derive the following ‘layer cake representation’ for the expectation

of Np-valued random variables.
Proposition 6.6. If Range(X) C Ny, then E[X] =) -, P(X > k).

Proof. The simple random variables X,, = ZZ:O kl{x—py increase to X, so

n—r oo

E[X] = lim E[X,]= lim zn: kP(X = k) = i EP(X = k),
k=1

k=0
hence - - . -
YP(X2k) =) > P(X=k+j)=> (P(X=1()=E[X]. O
k=1 k=1 j=0 =1

To complete our construction of the integral /expectation, suppose that X is any random variable and define
Xt =max{X,0}, X~ = max{—X,0}. (Equivalently, if £ = X_l([()7 oo)), XT=Xlgand X~ = —-Xlgc.)
Then X and X~ are nonnegative random variables and thus have well-defined expectations. If at least one
of them is finite, then we define E[X] = E[X ] — E[X .

If E[X "] and E[X "] are finite, so are E[X] and E |X| = E[X "] + E[X ], and we say that X is integrable.
If B[X*] =00 and E[X ] < oo, then E[X] = co; and if E[X "] < oo and E[X ] = oo, then E[X] = —o0.

This is all well and good in terms of defining the expected value, but we will see that integrability is often a

desirable feature.

And that’s how you build the integral! Start with indicators, extend linearly to simple functions, then to
nonnegative functions by monotone convergence, and finally to arbitrary functions by considering positive

and negative parts.

Many useful properties of expectation can be established by following this four-step procedure (or fewer

depending on where you start).
Proposition 6.7. If X <Y and E[X], E[Y] ezist in R*, then E[X]| < E[Y].
Proof. If 0 < X <Y, then
E[X]=sup{E[Z]: Z < X is simple} < sup{E[Z]: Z <Y is simple} = E[Y].
For general X <Y, we must have XT <YT and X~ >Y ", so
E[X]=FE[XT|-EX | <E[Y']-E[Y"]|=E[Y]

by our result for nonnegative random variables. |
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Similarly, we know that expectation is linear for simple random variables.

If X is nonnegative and ¢ > 0, then for any sequence of simple X,, ~ X, we have that ¢X,, * ¢X, so
ElcX] = lim, 00 E[cX,] = lim, o cE[X,] = cE[X].

Thus if F[X] exists and ¢ > 0, then

ElcX] = E[(cX)"] — E[(cX)” = cE[Xt] — cE[X ] = cE[X].
For ¢ < 0, we have that (cX)* = |¢| XF, so
BleX] = B[l X] - B[l X*] = d (B [X] - B[X*]) = ¢ (B [X*] - B[x"]) = cBLx]

in this case as well.

If X and Y are nonnegative random variables, Theorem 6.4 ensures the existence of sequences of simple
X, /X and Y, /Y, so Theorems 6.5 and 6.3 tell us that

EX +Y]= lim E[X,+Y,]= lim E[X,]+ lim E[Y,] = E[X]+ E[Y].

n—oo n—o0 n—oo
Finally, if Z = X + Y for integrable X,Y, then Z* — 7~ = Z = (XT — X)) + (YT — Y7), hence
Z¥ 4+ X" +Y" = Z7 4+ XT +Y*. Applying our result for nonnegative random variables shows that
E[Z*] + E[X~]+ E[Y~] = E[Z] + E[X*] + E[Y*], hence
E|Z)=E[Z"| - E[Z7|=E[XT]|-E[X |+ E[YT] - E[Y"| = E[X] + E[Y].
(Integrability of X and Y guarantees that X*, Y* and Z *+ all have finite expectations.)

There are additional cases where certain combinations of E[X ], E[X ], E[Y "], E[Y "] are infinite and anal-

ogous results hold, but we’ll content ourselves with the following consequence of the above computations.

Proposition 6.8. For any integrable X,Y and any a,b € R, E[aX + bY] = aE[X]| + bE[Y].

At this point, we recall that random variables X, Y are independent if {X € A} and {Y € B} are independent
events for all A, B € B.

Proposition 6.9. If X and Y are independent and nonnegative/integrable, then E[XY]| = E[X]E[Y].

Proof. If X,Y > 0,let X, = Y1, @, 314, , and Y, = 33", ynslp,, be as in Theorem 6.4—0 z;,; =

on
Apj=X"1 ((%7 72%1]) for j < 4", @y 4n =27, and A,, 4n = X1 ((27, o0]); similarly for Y.

Then {A, ;} and {B, } are independent and X, Y,, = Z?; Zi; TnjYnkla, ;nB,,, increases to XY, so

4’” 4"1
E[XY] = lim E[X,Y,]= lim szwyn xP(Anj N Bpi)
j=1k=1
4"1 4"1 47L 4"1
= nlggo Z Z xn,jyn,kP(An,j)P(Bn k) = nli)ngo Z Tn j n,j) : Z yn,kP(Bn,k)
j=1k=1 Jj=1 k=1

= lim E[X,] lim E[Y,] = E[XY].

If X and Y are independent and integrable, then {X ~, Xt} is independent of {Y =, YT}, so
EXY]=E[(XT -X")(YT-Y )] =EXTE[YT] - E[XT|E[Y ]
— (E[XT]E[YT] - E[X|E[Y"]) = E[XT|E[Y] — E[X|E[Y] = E[X]E[Y]. O
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This factorization formula immediately extends to any finite number of independent random variables because

Corollary 5.4 ensures that if X1,...,X,, are independent, then X; and X5 --- X,, are as well, hence
E[Xy - X, =E[X1]E[Xy-- X, ] = E[X41] - - E[X,)]

by the implicit induction hypothesis.
Likewise, if X7i,..., X, are independent and fi,..., f, : R — R are measurable, then f(X1),..., fn(Xy)
are independent, hence

E[frx(Xk)]-

E[kf[lfk(Xk)} = i

k

Before closing out this first section on expectation, we remark that while the monotone convergence theorem
is a great tool for constructing the integral, there are several other results for interchanging limits and

integration that will come in handy down the line.

We begin with Fatou’s lemma, which is interesting in its own right and will enable any easy derivation of

what is perhaps the most useful of these limit theorems.

Lemma 6.10. If X,, > C for alln € N and some C € R, then

Eliminf X,,] < liminf E[X,,].

n— oo n—oo

Proof. Let Y, = inf,,>, X, so that ¥ = lim,_, Y, = liminf, , X,,. Then X,, > Y, and Y¥,, Y > C,

so monotonicity and monotone convergence yield

liminf E[X,] > liminf E[Y,,] = E[Y] = Elliminf X,]. O
n— o0 n—oo n— o0
By replacing X,, with —X,, and using the fact that liminf,_, . (—2,) = — limsup,,_, .o Z», we see that if the

X, are uniformly bounded above, then E[limsup,, . X,] > limsup,,_, . E[X,].

We are now in a position to establish the celebrated dominated convergence theorem.

Theorem 6.11. If X, X1, X5, ... are random variables with X,, — X a.s. and Y is an integrable random
variable with | X,,| <Y for all n, then
lim E[X,]= E[X].

n— oo

Proof. By assumption, Y + X, is a nonnegative random variable, so Fatou tells us that

ElY]+ E[X] = E[Y + X] <liminf E[Y + X,,] = E[Y] + liminf E[X,,],

n—oo
hence E[X] < liminf, . E[X,].
Similarly, Y — X, is a nonnegative random variable, so

E[Y] - E[X] = E[Y — X] <liminf E[Y — X,,] = E[Y] — limsup E[X,,].

n—o0 n—o0o
It follows that E[X] > limsup,,_, . E[X,] > liminf, . E[X,] > E[X], so the inequalities are all equalities
and the theorem has been proved. (Il

When Y = C for some constant C' > 0, the above is sometimes termed the bounded convergence theorem.
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As an initial illustration of the utility of this result, we provide a partial converse to our factorization rule

for independent random variables.

Proposition 6.12. X and Y are independent if E[f(X)g(Y)] = E[f(X)]|E[g(Y)] for all bounded continuous

functions f and g.
Proof. Given any x,y € R, define
1, t<z 1, t<vy
fa)=q1=n(t—=z), z<t<az+i, ogt)=q1-n(t-y), y<t<y+>i.
0, t>z+ 1 0, t>y+ 5
Then bounded convergence and the assumptions give

P(X <2,Y <y) = F | lim fo(X)gu(V)| = lim E[,(X)] E[gn (V)]

—E Lli_)n;o fn(X)} [nli_{rgo gn(Y)} — P(X <2)P(Y <y). O
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7 FURTHER PROPERTIES

Higher Moments

A nice thing about expectation is that it describes some feature of a random variable’s distribution in terms
of a single real number, the mean p = E[X], which can be interpreted as the distribution’s ‘center of mass’

or the ‘average value’ taken by the random variable.

Of course, there are many other quantities that can capture different features of the distribution.

Definition. For k € N, the k" moment of a random variable X is m;, = E[X*], provided this expectation
exists. If X has finite mean p = my, its k& central moment is ¢y, = E[(X — p)¥].

After the mean, the most important of these is the second central moment, or variance, Var(X) = E[(X —u)?].
The variance measures the dispersion or spread of a distribution: If Var(X) is small, most of the mass of
the distribution is concentrated around FE[X], whereas a large variance implies that there is a reasonable

likelihood that the random variable takes values further from its mean.

Note that by linearity of expectation, we have the ‘shortcut formula’
Var(X) = E[X? — 2uX + p?] = E[X?] — 2uE[X] + p* = E[X?] - E[X]?.
A similar calculation shows that if F[X?] < oo, then for any a € R,

E[(X —a)?] = E[((X — u) + (n—a))"]
= E[(X = )?) +2(n — ) E[X — ] + (p — a)* = Var(X) + (1 — a)?,

which is clearly minimized at @ = p. This is the sense in which p = E[X] is our best guess for X: it’s the

projection of X onto the space of constant functions from 2 to R.

Often, one describes the variance of a random variable X in terms of its standard deviation ox = /Var(X).
The two encode the same information since the variance is nonnegative, but the standard deviation is nice
because it’s expressed in the same “units’ as X. For instance, one easily checks that Var(aX +b) = a?Var(X)

for all a,b € R, s0 gax45 = |a] ox.

A related quantity captures the (linear) association between two random variables X; and X, having finite

means 1 and g, the covariance Cov(Xy, Xa) = E[(X1 — p1) (X2 — p2)], and we have the resemblant formula
COV(Xl,XQ) = E[XlXQ — /JgXl — ,u1X2 -+ ILLLLLQ} = E[XlXQ] — E[Xl]E[XQ]

Whereas the variance is necessarily nonnegative, the covariance is not so constrained. It’s positive if, on
average, X; and X, are simultaneously larger than their means or simultaneously smaller, and it’s negative

if X; tends to exceed its mean when X5 subceeds its mean and vice versa.

The covariance is small when the association between the two is small—knowing that X; > p; does not

provide much information about whether Xo > .

Since the size of the covariance may be largely due to the individual dispersion of the two variates, one often
normalizes it to obtain the correlation
Cov Xl, X2
p(X1, Xo) = ¥
le O’X2
The Cauchy-Schwarz inequality ensures that p(X;, Xo) always has absolute value at most 1, and one can

verify that |p(X7, X2)| = 1 precisely when Xy = aX; + b, with the sign determined by that of a.
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In the case where X7 and X, are independent, we have E[X;Xs] = E[X1]E[X2], so Cov(X1,X3) = 0.
However, two random variables may have covariance 0 (in which case we say they are uncorrelated), but still

be dependent.

Example 7.1. Suppose that X has first and third moment equal to 0. In this case, the third moment
is the third central moment, or skewness of the distribution, which measures the asymmetry of ux. (For
symmetric distributions, W =4 —W, we have E[W2*+1] = E[(-W)?+1] = —E[W?2**1] 50 the odd order
moments vanish when they exist.) In this case X and Y = X? are clearly dependent, but Cov(X,Y) =
E[X3]—E[X]E[X?] = 0. This is because the covariance/correlation is really measuring the linear relationship

between the variates.

Given random variables Xi,..., X, defined on a common probability space, we have by linearity of the
expected value that E[X; +--- + X,,] = E[X1]+ -+ + E[X,].
If E[Xy] = px is finite for each k, then

Var(X; +---+X,)=F (ZXkZﬂk> =E (Z(Xk,uk)>

k=1

= B - m)? + 30 — ) (X — )

k=1 i#£]

E[(Xk — )] +2 Z El(Xi — pi)(X5 — p)]

n
k=1 1<i<j<n
n

Var(Xy) + 23 Cov(X;, X;).

k=1 i<j
Thus if X3, ..., X, are pairwise independent /uncorrelated, then the variance of their sum is the sum of their
variances.
Inequalities

In many applications, it is sufficient to obtain general bounds on the moments of a random variable, and

there are a number of nice results for doing so. To state our first, we need some facts about convex functions.
Definition. A function ¢ : R — R is convex if for all z1,z2 € R, A € [0, 1], we have
@ (Azy + (1 = Maz) < Ap(z1) + (1 = A)p(x2).

Thus ¢ is convex if the secant line connecting (z1,¢(z1)) to (22, ¢(z2)) always lies above the graph of .

Example 7.2. If ¢ is twice-differentiable, convexity is equivalent to ¢’ (z) > 0 for all z. To see this, note that
a second order Taylor expansion around any zo € R gives ¢(z) = ¢(z0) + ¢’ (z0)(z — z9) + 2" (2*)(z — 20)?
for some z* between x and z; in particular, o(z) > ¢(zo) + ¢’ (x0)(z — z0).

For any 1,29 € R, taking xg = Az1 + (1 — Ao yields

o(x1) > @(x0) + ¢'(w0) (21 — 0),
@(x2) > p(x0) + @' (z0) (22 — 20),
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hence
Ap(x1) 4+ (1= Np(x2) > Ap(w0) + M@ (x0) (21 — 20) + (1 = A)p(20) + (1 = A)¢(w0) (22 — 20)
= p(x0) + ¢'(zo)[Az1 + (1 = N)za — 2] = p(Az1 + (1 — N)22).

Thus, for example, f(z) = 22 and g(z) = €* are both convex functions.

In the case of a twice-differentiable convex function ¢, the inequality p(z) > ¢(z¢) + ¢ (x0)(x — zo) says
that the graph of ¢ always lies strictly above the tangent line to that graph at any point.

It turns out (and is not especially hard to prove), that an analogous statement is true for any convex function.

Fact 7.3. If ¢ is convez, then for any c € R, there is a linear function £(x) which satisfies £(c) = p(c) and
Ux) < p(x) for all x € R.

It is now a short step to derive the remarkably utile Jensen’s inequality.

Theorem 7.4. If ¢ is a convex function and X is a random variable, then
¢ (E[X]) < E[p(X)]

whenever the expectations exist.

Proof. Fact 7.3 gives the existence of a function ¢(z) = az + b which satisfies ¢ (E[X]) = ¢ (E[X]) and
l(x) < p(z) for all z € R.

By monotonicity and linearity, we have

Elp(X)] = E[((X)] = E[aX +b] = aE[X] + b= {(E[X]) = ¢ (E[X]). O
The triangle inequality, F |X| > |E[X]|, is an important special case of Theorem 7.4.

To state our next result, Holder’s inequality, we define the LP-norm of a random variable by || X ||, = E [|X|p]%
for p € [1,00) and || X|| = inf{M : P(|X| > M) = 0}.

Theorem 7.5. If p,q € [1, 00] with % + % =1 (where L :=0), then

XY, < {1X], 1Yl -

Proof. We first note that the result holds trivially if the right-hand side is infinity, and if | X[, = 0 or
[Y]l, =0, then [XY| =0 a.s.

Accordingly, we may assume that 0 < [|X|,[|Y]|, < co. In fact, since constants factor out of LP-norms, it
suffices to establish the result when [|X||, = [[Y]|, = 1.

Also, the case p = 00, ¢ = 1 (and symmetrically) is immediate since |X| < || X a.s., thus
EIXY| < E[IX]o V] = IX ] EIY] = X[l [V,

Accordingly, we will assume henceforth that p, ¢ € (1, c0).

Now fix y > 0, and define the function ¢ : [0,00) = R by ¢(x) = % + % — zy.

Since ¢'(z) = 2P~ —y and ¢"(z) = (p — 1)2P~2 > 0 for > 0, @ attains its minimum at zo = yﬁ
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for all x > 0. It follows that % + % > xy for every x,y > 0.

In particular, taking x = | X|, y = |Y|, and integrating, we have

1 1
E|XY| :/|X||Y|dP§ Z;/|X\PdP+5/|Y|%1P

X1, 1Yl 11
=l D S ), IV, =
p q q
Some useful corollaries of Holder’s inequality are:
Corollary 7.6 (Cauchy-Schwarz). E|XY| < /E[X?]E[Y?2].
Alternate Proof. For all t € R,
0< E|(|X]|+1t |Y|)2} — E[X?] +2%E|XY |+ E[Y?] = q(t),
thus the quadratic ¢(¢) has at most one real root, so its discriminant satisfies
2E|XY])? —4E [X*)| E[Y?] <0. O
Corollary 7.7. For any random variable X and any 1 <r < s < oo, || X|,. < || X],-
Proof. For s = oo, we have | X|" < || X||"_ a.s., hence
I1X1; = [1x1ap < [ 115 dp =X
For s < oo, apply Holder’s inequality to X" and 1 with p = 2, ¢ = - to get
X1 = BIXTT < 1, Il = ([ 101F aP) = XL

Our last big result is Chebychev’s inequality, which is both simple and surprisingly practical.

Theorem 7.8. For any nonnegative random variable X and any a > 0,
ElX
P(X > a) < P
a

Proof. Let A ={w: X(w) > a}. Then
aP(Xza)za/1AdP§/X1AdP§/XdP=E[X].

Corollary 7.9. For any (S, G)-valued random variable X and any measurable function ¢ : S — [0, 00),

P(o(x) > a) < ZEE
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Some important cases of Corollary 7.9 for real-valued X are

e o(x) = |z|: to control the probability that an integrable random variable is large.

e o(z) = (z — E[X])*: to control the probability that a random variable with finite variance is far from
its mean.

o p(z) =e
(concentration inequalities).

tZ: to establish exponential decay for random variables with moment generating functions

Change of Variables

The main practical use of the distribution of a random variable is that it enables us to transfer questions
about X from the abstract space (€2, F) to the more familiar (R, B). This is especially helpful for computing
expectations, connecting our general theory back to the setting of undergraduate probability.

For discrete random variables, we easily recover the definition of expectation as a sum against the pmf:

If Range(X) = {x1,...,2,}, then X = >} xxla, with Ay = X ~!(x), so our definition for simple
functions gives E[X] =Y ,_, 2, P(Ax) = > p_y 2 P(X = x);

If X is nonnegative with range {z1,z2,...}, then X,, = >°}'_; @114, /' X, so monotone convergence gives
E[X] =lim, 00 BE[X,,] = limy oo Yy 2k P(X = k) = Y ey 2k P(X = z);

If X has countable range and is integrable, then X+ and X~ are nonnegative with countable ranges and

finite expectation, so
EX|=EXT|-EX ]= Y zP(X=x;)— Y |6k P(X=2x)=) axP(X =)
j:x; >0 k:xp <0 k=1

where absolute convergence justifies rearranging the summands.

In order to deal with more complicated cases, we record the following change of variables theorem, which

allows us to compute expectations by integrating functions of a random variable against its distribution.

Theorem 7.10. Let X be a random variable taking values in the measurable space (S,G), and let = PoX !
be the pushforward measure on (S, G).
If f is a measurable function from (S,G) to (R,B) such that f >0 or E|f(X)| < oo, then

Blf(X)] = [3 £(5) du(s).

Proof. We will proceed by verifying the result in increasingly general cases paralleling the construction of

the integral.
To begin with, let B € G and f = 1p. Then

E[f(X)] = B[15(X)] = P(X € B) = u(B) = /S

15(s) dp(s) = /S £(s) du(s).

Now suppose that f = Y7, a;1p, is a simple function. Then by linearity and the previous case,

BUO0) = 3 a0l (0] = Y ai [ 1o () dus) = [ fs)ducs)



If f > 0, then Theorem 6.4 gives a sequence of simple functions ¢,, ' f, so the previous case and two
applications of the monotone convergence give

E[f(X)] = lim E[6,(X)] = lim [ éu(s) du(s) = / £(5) dia(s)
S S

n—oo n—0o0

Finally, suppose that E|f(X)| < oo, and set f*(z) = max{f(x),0}, f~ () = max{—f(z),0}. Then
fH >0, f=ft—f",and E[f(X)"],E[f(X)"] < E|f(X)| < o0, so it follows from the previous result
and linearity that

PLACO) = B ()] = B (0] = [ 7@ dut) = [ 1) duts) = [ 5)dus 0
If X has density f, then u(A) = [,du(z) = [, f(z)dx (where we use the notation [,dv = [1adv), s
Theorem 7.10 shows that for any measurable g:R— R with ¢ >0 as. or [ |g]dp < oo,
Blg(¥)) = [ gla)f(z) da.

An immediate corollary of Theorem 7.10 is that the expectation of a random variable is determined by its
distribution.

Corollary 7.11. Let X and Y be random variables (possibly defined on different probability spaces). Then
X =4 Y if and only if E[f(X)] = E[f(Y)] for all measurable f for which the expectations exist in R.

Proof. Suppose X =; Y and let u denote their common distribution. Then for all such f, we have E[f(X)] =
J7o f@) dulz) = E[f(Y)].

Conversely, if E[f(X)] = E[f(Y)] for all f, taking f = 14 for any A € B gives P(X € A) = E[14(X)] =
E[14(Y)]=P(Y € A), hence X =, Y. O

Product Measure

If X1,...,X, are random variables defined on a common probability space (2, F, P), we define their joint
distribution as the probability px,, . x,(A) = P((X1,...,X,) € A) on (R™, B™).
Since B" is generated by { —00, L] X+ X (=00, &)+ T1,. .., Ty € R} and P is countably additive, Theorem

3.14 ensures that there is a unique measure p on B™ (or its completion) satisfying
p((—o0, 1] X -+ X (—00,2,]) = P(X1 < @1,..., Xn < @) = Fx, . x, (@1, ..., 2Tn)

for all x1,...,x, € R.

That is, the joint distribution px, ... x, is uniquely determined by the joint cdf F'x,, . x, -
Note that the marginal distribution of X; can be recovered as
px,(A)=P(X1eR,....X;€A,... . X, eR)=pux,,. . x,Rx-xAx- - xR),
and independence of X1,..., X, is equivalent to the statement that the joint distribution factors as
Xy, X (A X X Ay) = pux, (Ar) -+ px, (An)

for all Aq,...,A, € B.
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Our next result will allow us to construct a probability space supporting finitely many independent random

variables with specified marginals.

Proposition 7.12. Given probability spaces (1, Fi,p1) and (Qa, Fa, pu2), there exists a unique measure
1 X o on (Q1 X Qo, F1 ® Fa) that satisfies (1 X p2)(A X E) = p1(A)uz(F) for all A€ Fi, E € Fo.

Proof. Since o-algebras are semialgebras, Example 3.3 shows that R = {AX E : A € F,E € F}isa
semialgebra, and Proposition 11.27 shows it generates F; ® Fo.

Define v : R — [0,00) by V(A X E) = p1(A)pa(E).

In light of Theorem 3.14, the result will follow if we can prove that for any countable disjoint union of sets
{Ai X Ei}ier in R such that A x E = J,c;(4; x E;) € R, we have v (A x E) =, v(A; X E;).

(Clearly v(0) = 0 and v(£2; x Q) = 1, and countable additivity implies both finite additivity and countable
subadditivity, so v will be a protomeasure if this condition obtains.)

To see that this is so, observe that for all (x,y) € Q; x Qq,

La(@)1p) = laxe((@y) =Y laxe (@) =D 1a,(2)1E,(y)
el el
Consequently,
m(A)lE(y):/Ql 1a(2)1p(y) dyos (2 /%Zju ) dyus ()
_EZI/Q La, (2)1E, (y) du (z) = ZEZI </91 1Ai($)d/~01(9€)> 1g,(y)
= ()1
el

The interchange of summation and integration in the second line is justified by the monotone convergence

theorem.

Integrating against po then gives

V(A % E) = i (A)n (F) = / (A 5) ety / Zu y) dua(y)
= ZMl / d/iz Z /Jl Z I/(AZ X Ez) O
el el el

By induction, given (4, F1, P1),. .., (Qn, fn, P,), we see that there is a unique probability Py x --- x P, on
(H:L:l Qi Qi ]-"i) satisfying P(A; x - Ay) =TI, P(A;). The projections X; (w1, ..., wy)) = w; are
clearly independent with pux, = p;.

The main tool for integrating against product measure is the Fubini-Tonelli theorem, the proof of which
is relegated to the appendix. (Tonelli’s theorem treats nonnegative functions and Fubini extends to those

which are integrable. In practice, one applies Tonelli to | f| in order to then deduce Fubini.)

Fact 7.13. Suppose that (R, F, i) and (S, G, v) are probability spaces. If a measurable function f : RxS — R

is nonnegative or integrable, then

f = [ (o) [ (] oo



In order to build an infinite sequence of independent random variables with given distribution functions,

we need to perform the above construction on the infinite product space
RN = {(wl,wg, ) iw; € R} = {functions w:N— R}.
The product o-algebra BY is generated by cylinder sets of the form
{w e RN : w; € (ag,by] for i =1, ...,n},

and the random variables are the projections X;(w) = w;.
(In the definition of cylinders, we take —oo < a; < b; < oo with the interpretation that (a;,o0] = (a;, 00).
a; = b; for any j gives the empty set.)
Clearly, the desired measure should satisfy
P ({w c RN Tw; € (ai,bi] for i = 1, ,’I’L}) = H (Fl(bz) — Fi(ai))
i=1
on the cylinders.

To see that we can uniquely extend this to all of BY, we appeal to the following Kolmogorov extension

theorem, a proof of which can be found in the appendix.

Fact 7.14. Suppose that we are given a sequence of probability measures pi,, on (R™, B™) which are consistent

in the sense that
Hn+1 ((al,bl] X -+ X (an,bn] X R) = Un ((al,bl] X -+ X (an,bn]) .

Then there is a unique probability measure P on (RN, BY) with

P({weRY :w; € (a;,b,i=1,...,n}) = pn ((a1,b1] x -+ X (an, by)).

In particular, given distribution functions Fi, Fb, ..., if we define the u,’s by the condition

i (a1, b1] % - x (an, ba]) = [T (Fibi) = Fian)),

i=1

then the projections X, (w) = w,, are independent with P(X,, < z) = F, ().
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8 CONVERGENCE IN PROBABILITY AND THE WLLN

Large number laws give conditions for the arithmetic average of repeated observations to converge in certain
senses. Among other things, they justify and formalize our intuitive notions of probability as representing

some kind of measure of long-term relative frequency.

Convergence in Probability and L?

Definition. A sequence of random variables X1, X5, ... is said to converge to X in probability if for every
€>0, lim P(|X,, — X| > ¢) =0. In this case, we write X,, =, X.
n—oo

Note that if X,, —, X, then lim, .o P(|X, — X| <e) = 1 for all ¢ > 0, while X,, - X a.s. implies
that P (lim, 00 | Xn — X| <€) = 1 for all € > 0. The following proposition and example demonstrate the
importance of the placement of the limit in the two definitions.

Proposition 8.1. If X,, =+ X a.s., then X,, —, X.

Proof. Let € > 0 be given and define
(oo}
A= J {IXm—X|>e}, A=A
m>n n=1

E={w: nlLII;oXn(w) #X(w)}.

Since A; 2 A D ..., continuity from above implies that P(A) = lim,,_,o, P(4,).

Now if w € A, then for every n € N, there is an m > n with | X, (w) — X (w)| > ¢, s0 lim,,_, 00 Xp(w) # X (w),
and thus A C E.

Because we also have the inclusion {|X,, — X| > ¢} C A,,, monotonicity gives

hm P(X,—X|>¢) < lim P(A,)=P(A) <P(E)=0

n—oo

where the final equality is the definition of almost sure convergence. ]

Example 8.2 (Scanning Interval). On the interval [0,1) with Lebesgue measure, define

X1 = 1[0’1),X2 = 1[07%),)(3 = 1[%71)7...7X2n+k = 1[% k+1)’

2m oy 2T

—but lim,, o X, (w)

It is straightforward that X,, —, O0—for any ¢ > 0, m > 2™ implies P (| X,,, — 0] > ¢) <
(w and infinitely many

) =

1

2n
does not exist for any w since there are infinitely many values of n with X, 1
values with X,,(w) = 0.

The preceding shows that convergence in probability is weaker than almost sure convergence. Another mode

of convergence that shows up often in probability is with respect to the LP norm.

Definition. For p € (0,00], a sequence of random variables X7, X», ... is said to converge to X in LP if
lim [|X,, — X||, = 0. (For p € (0,00), this is equivalent to F [|X,, — X|”] = 0.)
n—oo
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Proposition 8.3. For any 1 <r <s<oo, if X;, > X in L?, then X,, — X in L".

Proof. If X,, — X in L?, then Corollary 7.7 implies || X,, — X||,. < || X,, — X|, — 0. |

Proposition 8.4. If X,, =+ X in LP for p >0, then X,, =, X.

Proof. By the previous proposition, we can assume p < co. For any € > 0, Chebychev’s inequality gives

P(Xp—X|>¢)=P(|Xn - X|P >&P) < PE[|X, — X|"] - 0. O

Example 8.5. On [0, 1] with Lebesgue measure, define a sequence of random variables by X,, = n%1(077L—1],
p € (0,00). Then X, — 0 a.s. (and thus in probability) since for all w € (0,1], X, (w) = 0 whenever
n > w~ . However, F'[|X,, — 0/"] =1 for all n, so X,, » 0 in LP. Additionally, || X, — 0| = nv diverges.

Proposition 8.4 and Example 8.5 show that LP convergence is stronger than convergence in probability.
Example 8.5 also shows that almost sure convergence need not imply convergence in LP (unless one makes
additional assumptions such as boundedness or uniform integrability).

Conversely, Example 8.2 shows that LP convergence does not imply almost sure convergence for p < oo;

since | X| < || X, a.s., L> convergence implies a.s. (uniform) convergence.

As one can pass limits through continuous functions, it’s immediate that X,, — X a.s. implies f(X,,) = f(X)
a.s. for any continuous f : R — R. We will see later that convergence in probability is also preserved by
continuous functions. However, LP convergence need not be. For example, on [0, 1] with Lebesgue measure,
X, = nél(ovnfp) converges to 0 in L? for p < oo, but if f(z) = 2, || f(X,) — f(0)[|, = 1 for all n.

Weak Laws of Large Numbers

Theorem 8.6. Let X1, X, ... be uncorrelated random variables with common mean E[X;] = p and uniformly
bounded variance Var(X;) < C < oo, and set S, = X1 + ... + X,,. Then %Sn — u in L? and in probability.

Proof. Since E [15,] = L5 | 1= 11, we see that

1
n

1 2 1 1 & nC
as n — oo, hence %Sn — p in L?. By Proposition 8.4, %Sn —p 1 as well. (]

Specializing to the case where the X;’s are independent and identically distributed (or i.i.d.), we have the

oft-quoted weak law

Corollary 8.7. If X1, X, ... are i.i.d. with mean p and variance o2 < oo, then X,, = %Z?’Zl X, converges
in probability to .

The statistical interpretation of Corollary 8.7 is that under mild conditions, if the sample size is sufficiently

large, then the sample mean will be close to the population mean with high probability.
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The following amusing result can be interpreted as saying that a high-dimensional cube is almost a sphere.

Example 8.8. Let Xl, Xs, ... be independent and uniformly distributed on [—1,1]. Then X2, X2, ... are i.i.d.
with E[X?] = [1, £de = L and Var(X?) < E[X#] < 1, so Corollary 8.7 shows that 1 37 | X? converges
to 1 3 in probability.

Now given ¢ € (0,1), write A, = {z € R": (1 — )/ < ||z|| < (1 +¢€)\/Z} where ||z]| = (23 + ... + 22)3
is the usual Euclidean distance, and let m denote Lebesgue measure. We have

m(ApeN[=1,1]")
on

= P((X1,..X,) € Ape) =P | (1— 5)\/2 <

(‘.0

1
:P<3(1—2E+5 ZX 1+25+52)>
1 — 1 2¢ —¢?
Pll=) X2-Z|<
(i35 <257).

— 1 as n — oo. In words, most of the volume of the cube [—1,1]" comes from A,, .,

so that
which is almost the boundary of the ball centered at the origin with radius \/g .

m(A, N[—1,1]")
271/

Our next set of examples concern the limiting behavior of row sums of triangular arrays, for which we appeal

to the following easy generalization of Theorem 8.6.

Theorem 8.9. Given a triangular array ofmtegmble random variables, { Xy, 1. fnen keln), let Sn = Zk 1 X

denote the n'* row sum, and write u,, = E[S,], 02 = Var(S,). If {b,}5°, satisfies hm [1:2 =0, then
S _
'nipfn _>p 0.
bn
2
Proof. By assumption, F ( bnM") = % — 0 as n — 00, so the result follows since L? convergence
implies convergence in probability. ]

Example 8.10 (Coupon Collector’s Problem). Suppose that there are n distinct types of coupons and each
time one obtains a coupon it is, independent of prior selections, equally likely to be any one of the types.
We are interested in the number of draws needed to obtain a complete set. To this end, let T;, ; denote the
number of draws needed to collect k distinct types for k£ = 1,...,n and note that T, ; = 1. Set X,,; =1 and
Xng =Tn i —Tnp—1 for k=2,...,n so that X,, ; is the number of trials needed to obtain a type different

from the first k¥ — 1. The number of draws needed to obtain a complete set is given by

n

Tn:: Z nkl *1+2Xnk

k=2 k=2

By construction, X, 2, ..., Xy » are independent with P(X,, ; = m) = (2=£+l) (b)mfl for m € N.

n n

Now a random variable X with P(X =m) = p(1 —p)™ ! is said to be geometric with success probability p.

A little calculus gives

= dl—p 1
RO W IR
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and

EX? =Y m’p1-p)" ' = [m(m—1)+mlpl-p)™"
=p(1—p) Y mim—1)1-p)" 2+ Y mp(l—p)™"
o d? " 2 (1-p? 1
=p(1=p) 3 (=P 4 BX] =1 - P
72(1—p)+1:2—p
p? p p*
hence . .
_ 2 2 _+t—-p_ L1
Var(X) = E[X°] - E[X]* = e §p2.

It follows that

|
2.5

n n n—1

n 1
FET,] =1 E FlX, =1 E — =1 E ==
o +k:2[ & +k:2n—k‘+1 +nj:1j !

Jj=1
and
n n n 2 n—1 1 s 1 7T2’rl2
_ e _ 2 il 2 I
Var(T,) = 3 Var(X,. 1) gZ(n_k+1> —w Y ey =T
k=2 k=2 Jj=1 j=1
Taking b,, = nlog(n) we have VaZ(QT") < 6102?11)2 — 0, so Theorem 8.9 implies %j;ﬁk_l —p 0.
Using the inequality
n
1
log(n) < ]; Z <log(n)+1

(which can be seen by bounding log(n) = [ % with the upper Riemann sum Y} L < S0 1 and the

T,
lower Riemann sum > _, + =>";_; + — 1), we conclude that an(n) —p 1
Example 8.11 (Occupancy Problem). Suppose that we drop 7, balls at random into n bins where In —c.
n
Letting X, = 1{bin k is empty}, the number of empty bins is X,, = ZZ:l Xn k-
It is clear that

E[X,] = ZE[Xn,k:] = ZP(bin k is empty) = n (n — 1)%

n
k=1 k=1
and
EIX2=FE|> X2, +2> XniXp;| =Y E[Xnxl+2) E[X,;X, ;]
k=1 i<j k=1 i<j
= Z P(bin k is empty) + 2 Z P(bins i and j are empty)
k=1 i<y
—1\"™ —2\"™ 1\ 2\
() ) (5) 2 (-5) e (-5)
n 2 n n n
S0



) C 1 . . log ”7*1) ) n—2 n ‘ -
Now L’Hospital’s rule gives lim ————= = lim 5 — _1, so, since - — ¢, we have that
n—oo n— n—oo —N n—1 n
— 1 Tn " 10 ﬂ _ 1 T
10g[<n ) }:T'g(?)_}_candthus(n ) — e “asn — oo.
n n n n
2 Tn 1 271y
Similarly, <1 — ) , (1 _ ) 2
n n
ElXn —1\"™
Consequently, %] = (n ) — e and
n n
Xn 1 -1 n _ 1 2 Tn 1 271,
Var(2 ):( n) +n(n2 )<1_) _(1_) _>0_|_1'€72c_€72620
n n n n n

X
as n — 00, so taking b,, = n in Theorem 8.9 shows that the proportion of empty bins, —, converges to e~ ¢
n

in probability.

We conclude this section with a weakening of the moment assumptions in the classical WLLN. The trick is to

use truncation in order to consider cases where we have control over the size and the probability, respectively.

Theorem 8.12. Suppose that X1, Xs, ... are i.i.d. with E|X;| < co. Let S, = Z?:l X; and p = E[X;].
Then %Sn —  in probability.

Proof. In what follows, the arithmetic average of the first n terms of a sequence of random variables Y7, Y5, ...
will be denoted by Y,, = L 3" | Y.

We first note that, by replacing X; with X/ = X, — u if necessary, we may suppose without loss of generality
that E[X;] = 0.

Thus we need to show that for given ,§ > 0, there is an N € N such that P (|Yn| > 5) < 0 whenever
n>N.

To this end, we pick C' < oo large enough that E [|X1]1{|X1| > C}] < n for some 71 to be determined.
(This is possible since | X;|1{|X1| <n} < |X;| and E | X;1] < 00, s0 lim,, o E[|X1|1{|X1]| < n}] = E|X4]
by the dominated convergence theorem, hence E[|X1]|1{|X1| > n}] = E|X1| — E[|X1]1{|X1]| <n}] — 0.)
Now define

Wi = X;1{|X;| < C} - E[X;1{|X;| < C}]

By assumption, we have that
E|Z;| <2E[|X1]1{|X1]| > C}] < 2n,

and thus, for every n € N,

E|Z,|=E

1 n
w2 %

Also, the W;’s are i.i.d. with mean zero and satisfy |W;| < 2C' by construction, so

1n
< = El|Z;| <2n.
_n; |z|_77

— 1 [& E[W?2]  4C?
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and thus, by Jensen’s inequality,
4C?

B(W.|)" <E[W;] <=

Consequently, if n > N := {477%2—‘, then E |Wn| <.
Finally, Chebychev’s inequality and the fact that

[ Kol = Wo+ 20| < [Wa| + |20
imply that for n > N,

P(%a] > ) < P (W] + [Z] > 2) < 2l L 30

9 9

Taking n = % completes the proof. (]

Finally, we mention that the weak law can be slightly upgraded to accommodate certain situations involving

infinite means. A proof is given in the appendix, along with a fun example.

Fact 8.13. Let X1, X5, ... be i.i.d. with
xP(|X1| > x) = 0 as x — 0.

Set S, = X1+ ...+ X, and p, = E[X11{|X1] < n}]. Then %S’n — in, — 0 in probability.
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9 BOREL-CANTELLI LEMMAS

Given a sequence of events Aj, As, ... € F, we define

[ee] (oo}
limsup, A4, = ﬂ U A, = {w : w is in infinitely many An},

n=1m=n

which is often abbreviated as {4,, i.0.} where “i.0.” stands for “infinitely often.”

The nomenclature derives from the straightforward identity limsupla, =

1,. .
oo limsup,, A,

One can likewise define liminf,, 4, := (J,~, (r._,, Am, the set of outcomes belonging to all but finitely many

of the A,, but little is gained by doing so since liminf, A, = (lim SupnAS)c.

To illustrate the utility of this notion, observe that X,, — X a.s. if and only if P (|X,, — X| > ¢ i.0.) =0 for

every € > 0.
Lemma 9.1 (Borel-Cantelli I). If > | P(A,) < oo, then P(A, i.0.) = 0.

Proof. Let N =%, 14, denote the number of events that occur. Tonelli’s theorem (or MCT) gives

BN = 3" Blia] = 3 P(4,) <,

so it must be the case that N < oo a.s.

oo

(Alternatively, writing B,, = (J-_, A, we see that B,, \, (o, B,, = limsup, 4, so continuity from above
implies P(A,, i.0.) = lim,, oo P(By) <lim, 00 > o, P(A,) =0.) O

A nice application of the first Borel-Cantelli lemma, is

Theorem 9.2. X,, —, X if and only if every subsequence {Xnm }::1 has a further subsequence {Xnm(k) }2021

such that X — X a.s. as k — oo.

Mm (k)

Proof. Suppose that X,, —, X and let { X, }::1 be any subsequence. Then X,, —, X, so for every k € N,

P (|X,, —X|> %) —0asm — oco. It follows that we can choose a further subsequence {X,,, },—, such
that P (| X, ., —X|> 1) <27 for all k € N. Since
ip | Xy — X| > 1)<
Mo (k) % = 0,
k=1
the first Borel-Cantelli lemma shows that P (| X, — X| > ¢ i.0.) =0.
Because {|Xnm<k-> — X| > ¢ i.o.} - {|Xn7n(k') — X| > % i.o.} for every € > 0, we see that Xnm(k) — X a.s.

To prove the converse, we appeal to the following lemma.

Lemma 9.3. Let {y,}52, be a sequence of elements in a topological space. If every subsequence {yn, }>>_;

has a further subsequence {ynm(k) };0:1 that converges to y, then y, — y.

Proof. If y, - y, then there is an open set U > y such that for every N € N, there is an n > N with
yn ¢ U, hence there is a subsequence {y,, }>>_, with y,, ¢ U for all m. By construction, no subsequence

of {yn,, }22_; can converge to y, and the result follows by contraposition. O
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Now if every subsequence of {X,}52, has a further subsequence that converges to X almost surely, then

applying Lemma 9.3 to the sequence y,, = P(|X,, — X| > ¢) for an arbitrary ¢ > 0 shows that X,, —, X. O

Since there are sequences that converge in probability but not almost surely (e.g. Example 8.2), it follows
from Theorem 9.2 and Lemma 9.3 that a.s. convergence does not come from a topology.
Theorem 9.2 can sometimes be used to upgrade results depending on almost sure convergence.

For example, one can show that the assumptions in Fatou’s lemma and the dominated convergence theorem

can be weakened to require only convergence in probability.

To get a feel for how this works, we prove

Theorem 9.4. If f is continuous and X, —, X, then f(X,) —, f(X). If f is also bounded, then
E[f(Xn)] = E[f(X)].

Proof. It {X,,, } is a subsequence, then Theorem 9.2 guarantees the existence of a further subsequence
{Xnm(k)} that converges to X a.s. Since limits commute with continuous functions, this means that
f(Xn,y) = f(X) a.s. The other direction of Theorem 9.2 now implies that f(X,) —, f(X).

If f is bounded as well, then the dominated convergence theorem yields E [f (X, ,,)] = E[f(X)].
Applying Lemma 9.3 to the sequence y,, = E[f(X,,)] establishes convergence in expectation. O

We will now use the first Borel-Cantelli lemma to prove a weak form of the Strong Law of Large Numbers.

Theorem 9.5. Let X1, Xo,... be i.i.d. with E[X1] = and E [Xf] <oo. IfS, =X;+..+X,, then
%Sn — u almost surely.

Proof. By taking X! = X; — u, we can suppose without loss of generality that u = 0. Now

E[Si =E (§X> jz:;Xj (ng> (éxl) =E Z XiX; X X,

1<i,g,k,l<n
By independence, terms of the form E [X2X;|, E [X2X;X;| and E[X;X;X,;X;] are all zero (since the
expectation of the product is the product of the expectations).
The only non-vanishing terms are thus of the form E [X}] and E [X?X?], of which there are n of the former

and 3n(n — 1) of the latter (determined by the (%) ways of picking the indices and the (3) ways of picking

which two of the four sums gave rise to the smaller index).

Because F [X?X?] = E [XE]Q < E [X}], we have
E[S!] <nE[X}] +3n(n— 1)E[X?]* < Cn?

where C' = 3F [Xﬂ < oo by assumption.
It follows from Chebychev’s inequality that

1 4 4 C
P (n 1] > g> —p (|sn\ > (ne) ) < —
hence
= 1 S|
P(=|S, <Ce ™ty — .
> (n| |>5) TR
Therefore, P (+]S,| > ¢ i.0.) = 0 by Borel-Cantelli, so, since ¢ > 0 was arbitrary, %LS" — 0 a.s. O
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A much more involved argument based on truncation and passing to a suitable subsequence shows that the

assumptions in the strong law can be weakened to F |X;| < oo.

The converse of the Borel-Cantelli lemma is false without additional assumptions.

Example 9.6. Let Q = [0,1], F = Borel sets, P = Lebesgue measure, and define A,, = (0, %)
Then >0 | P(A,) =Y 0" + = 0o and limsup,,_,,, A, = 0.

n=1

Lemma 9.7 (Borel-Cantelli II). If the events Ay, As, ... are independent, then Y > | P(A,) = oo implies
P(A, io) =1.

Proof. For each n € N, the sequence B, 1, Bp.2, ... defined by B, x = ("t* AC decreases to B, := Moo, AS.

m=n

Also, since the A,,’s (and thus their complements) are independent, we have

n+k n+k
P(B, ;) =P ( N Aﬁ) = [ P(45)

m=n m=n

n+k n+k .
= ] - PAn) < J] e 7Am) = = Tih PCAn)
m=n m=n

where the inequality is due to the Taylor series bound e=* > 1 — z for x € [0, 1].

Because > ~_ P(A,,) = co by assumption, it follows from continuity from above that

P(By) = lim P(B,;) < lim e~ Zm=n PAn) =,

k—o0 k—o0
hence P (Us._,, Am) = P (BS) =1for all n € N.
Since U,°_,, Am “\ limsup,,_, . A, = {4, i.0.}, another application of continuity from above gives

P(A,i0) = lim P ( D Am> =1 O

n— oo
m=n

Taken together, the Borel-Cantelli lemmas show that if A, Ao, ... is a sequence of independent events, then
the event {A,, i.0.} occurs either with probability 0 or probability 1.
Thus if Ay, A, ... are independent, then P(A,, i.0.) > 0 implies P(A4,, i.0.) = 1.

This is an example of a 0-1 law; we’ll see another presently.

It follows from the second Borel-Cantelli lemma that infinitely many independent trials of a random experi-

ment will almost surely result in infinitely many realizations of any event having positive probability.

For example, an infinite string with characters chosen independently and uniformly from a finite alphabet
(produced by the proverbial monkey at a typewriter, say) will almost surely contain infinitely many instances
of any finite string (like the complete works of Shakespeare in chronological order).

Our next example is a typical application where the two Borel-Cantelli lemmas are used together to obtain

results on limits of (suitably scaled) sequences of i.i.d. random variables.

Example 9.8. Let X;, Xo,... be a sequence of i.i.d. exponential random variables with rate 1 (so that
X; 2 0 with P(X; <) =1— ™). We will show that limsup,,_, ., oy = 1 as.
51



First observe that

SO

> (=) -2;

Since the X,,’s are 1ndependent the second Borel-Cantelli lemma implies that P ( >11i. 0) =1, and

Tog(n)
we conclude that limsup,,_, ., log( y =1 almost surely.
On the other hand, for any ¢ > 0,

1
n1+s’

X,
P(log( 2 1+s> =P(X,>(1+¢)log(n)) =

which is summable, so it follows from the first Borel-Cantelli lemma that P ( ) >1+e¢i.o. ) =0.

Since € > 0 was arbitrary, this means that limsup,, . m < 1 almost surely, and the claim is proved.

We conclude this section with another famous 0-1 law.

Definition. Given a sequence of random variables X1, X, ..., the tail o-field is T = ﬂ o(Xn, Xnt1, )

n=1

Theorem 9.9 (Kolmogorov). If X1, X, ... are independent and A € T, then P(A) € {0,1}.

Proof. We will show that A is independent of itself so that P(A)? = P(A)P(A) = P(An A) = P(A).
To do so, we first note that B € (X, ..., Xx) and C € 0(Xgy1, Xgr2,...) are independent.
This follows from Lemma 5.3 if C' € 0(Xj41, ..., Xi+j). Since o(X1, ..., Xi) and U;L 0(Xkt1, .o, Xpyj) are

m-systems, Theorem 5.1 shows this is true in general.
Next, we observe that E € 0(X1, X2,...) and F' € T are independent.

If E € o(Xy,..., Xg), then this follows from the previous observation since F' € T C o(Xgi1, Xgt2,---)-
Since Jpe; 0(X1, ..., X)) and T are mw-systems, Theorem 5.1 shows it is true in general.

Because T C o(X1, Xa, ...), the last observation shows that A € T is independent of itself. a

Example 9.10. If By, B,,... € B, then {X,, € B, i.0.} € T. Taking X,, = 14,, B, = {1}, we see that
{X, € B, i.0.} ={A, i.0.}, s0if Ay, As,... are independent, then P (A, i.0.) € {0,1}. Of course, this also
follows from the Borel-Cantelli lemmas.

Example 9.11. Let S,, = X; + ... + X;;. Then

o {lim, o S, exists} € T since convergence of series only depends on their tails.
o A= {limsup,_,., Sn >0} ¢ T in general since the initial terms can effect the sign of the sum.
o If ¢,, — o0, then {limsup,,_, %Sn >x ¢ € T for all z € R since the contribution from any finite

number of terms of S,, will be killed by c,,.
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10 STEIN’S METHOD AND THE CLT

Whereas large number laws treat the first order asymptotics of sums of random variables, central limit
theorems describe their fluctuations about these limits. There are a number of CLTs applying to different
objects and operating under various assumptions, but the prototypical version says that if X7, Xs,... are
i.id. with mean y and variance o2 € (0,00), then S,, = >_I"_ | X; satisfies
Sn T g A0, 1).
ay/n

The double arrow here denotes weak convergence (or convergence in distribution/law), and we say that a
sequence {X,,} with distribution functions {F},} converges weakly to a random variable X with distribution
function F if lim, o Fy(x) = F(z) for all z at which F' is continuous. [There are a number of other
equivalent characterizations, and one can show that convergence in probability (and thus a.s. or in LP)

implies weak convergence, but not conversely in general.]

The classical CLT is typically established by considering characteristic functions, defined by ¢x (t) = E[e®¥].
These necessarily exist for all ¢ € R and satisfy ¢a, x,+...+a, x., (t) = [11—; ¢x, (a;t) if X1,..., X, are inde-
pendent. Moreover, one can show that if px is continuous at 0, then X,, = X iff px, (t) — ¢x(t) pointwise.
If X has mean 0 and variance 02 < 0o, a second order Maclaurin expansion yields px (t) = 1 — 2022 +o(t?),

n 2
so the characteristic function of S;:/ﬁ“ is given by ¢, (t) = (1 — % + o(t?/n))" — e~ 7, the ch.f. of a

standard normal.

It takes a fair amount of work to make all of this rigorous, and though one sees some nice stuff along the
way, we will opt here to pursue an alternative approach developed by Charles Stein in the 1960s and 1970s.

In addition to requiring less technical machinery, this method is highly adaptable to other situations in-
volving distributional convergence and approximation. Moreover, it does not require as rigid independence
assumptions as the characteristic function route and also yields convergence rates; while it’s all well and
good to know that sample means are normal in the limit, in practice one would like to know how good the

normal approximation is for finite n.

Broadly, Stein’s method refers to a framework based on solutions of certain differential or difference equations
for bounding the distance between the distribution of a random variable X and that of a random variable

W having some specified target distribution.

The metrics for which this approach is applicable are of the form
dy(Z(X), Z(W)) = sup |E[L(X)] — E[A(W)]]
heH
for some suitable class of functions H, and include the Kolmogorov, Wasserstein, and total variation distances
as special cases. These arise by taking H to be the set of indicators of right-closed rays, 1-Lipschitz functions,
and indicators of Borel sets, respectively. Convergence in each of these three metrics is strictly stronger than
weak convergence (which can be metrized by taking H to be the set of 1-Lipschitz functions with sup norm

at most 1).

The basic idea is to find an operator A such that E[(Af)(X)] = 0 for all f belonging to some sufficiently
large class of functions F if and only if Z(X) = Z(W).

For example, we will see that W ~ N(0,1) if and only if E[f' (W) — W f(W)] = 0 for all Lipschitz f.
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If one can then show that for any h € H, the equation

(Af)(@) = h(z) — E[L(W)]
has solution f;, € F, then upon taking expectations, absolute values, and suprema, they find that

dy(Z(X), Z(W)) = sup [E[M(X)] = E[R(W)]| = sup [E[(Af) (X

Remarkably, it is often easier to work with the right-hand side of this equation and the techniques for

analyzing distances between probability distributions in this manner are collectively known as Stein’s method.

We begin by establishing a characterizing operator for the standard normal.
Lemma 10.1. Define the operator A by

(Af) (z) = f'(z) — 2 f().
If Z ~N(0,1), then E[(Af) (Z)] = 0 for all absolutely continuous [ with E|f'(Z)] < co.

Proof. Let f be as in the statement of the lemma. Then Fubini’s theorem gives
E[f/(Z)]_l/f/(m)ex;dx—l/O f(x)e de—l——/ f(x

; V2m Jr B Vo2r J s
1 0 z 2 .

= \/—2?/ f'(z) (‘/ ye2dy) dx + —/ fl(x </ 2dy> dx
1 /0 2 0 2

= — ye T (_/ f/(;z:)dg:) dy + —/ —5 </ f(x dm) dy

vor ) )

0 2
=\/L2—W/i ye~ 2 (f(y) — f(0)) dy + \/ﬂ/ ye 7 y) — f(0))dy
= \/127/00 yf(y)e’édyff(O)E[ ye~ T dy
= E[Zf(Z2)] - f(0)E[Z] = E[Zf(Z)]. O

If || f']| o, < o0, then E|f'(Z)| < oo, and the condition E [(Af) (W)] = 0 whenever ||f'||,, < oo turns out to
be sufficient for W ~ N(0,1). For this class of functions, Lemma 10.1 is just integration by parts.

Lemma 10.2. If ® is the distribution function for the standard normal, then the unique bounded solution

to the differential equation
flw) = wf(w) =1(—oom(w) — ()
is given by
fow) = { Fez (1- () @w), wsz
V2me' s <I>( 1 —®(w)), w>zx

Moreover, f, is absolutely continuous with | f,| . < \/g and || /2| <

Proof. Multiplying both sides of the equation f’(t) —tf(t) = 1(_ 4 (t) — ®(x) by the integrating factor e

shows that a bounded solution f, must satisfy

G 100) = % 100 — o)) = €% [Lce (1) — 2(2)]
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and integration gives

fow) =¥ [ e (1m0 - 2 b
= eF [T (L) - 0)) dt
When w < z, we have
folw) = e /w €™ (1 oo (t) — ®()) dt = /w e % (1— ®(a)) dt

— V2re*t (1- () \/% /_w =5 dt = V2net (1 - ®(z)) B(w),

”*/ 2 (1o () — B(2)) dt:—e%/ =5 (0 — D) dt
:\/ﬂe%q)(x)\/—??/w e”Tdt = V2meT (x)(1 — B(w)).

To check boundedness, we first observe that for any z > 0,

<s+z>2

1—9(z ds

\/277/ \/271'/
d 2 1 o 52d 1 22
e Pds<e 7T e~ 2ds=—-e" 7,

\/271' / \/271'/0 2

and, by symmetry, for any z <0,

—_
[N

z

P(z)=1—-D(|z]) < ze” 7.

[\

Since f, is nonnegative and f,(w) = f_,(—w), it suffices to show that f, is bounded above for x > 0.
If w>ax >0, then

w? w? 1 _ w2
fo(w) =V2me 7 @(z)(1 — ®(w)) < V2me' 2 -1- 56_7 = \/i;
If 0 <w <z, then

fa(w)

Vare't (1 B(x)) @ (w)
w? _22 w2 1w T
\/7 2 2 2~1§ﬁe2-§e 2:\/;;

IA

and if w <0 < z, then

() = VaReE (1= 8() bluw) < VBT 1 Lo F = 2

That f, is the only bounded solution follows by observing that the homogeneous equation f'(w)—wf(w) =0

[\ \

has solution fj,(w) = C’e% for C' € R, so the general solution of our nonhomogeneous linear equation is
given by f.(w) 4+ Cfr(w), which is bounded if and only if C' = 0.
Finally, by construction, f, is differentiable at all points w # x with f;(w) = wfe(w) + 1o 21 (w) — (),
so that

[fa(w)] < Jwfo(w)] + [1(—oo,01(w) = @(2)] < Jwfa(w)] +1.
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For w > 0,

2

wﬂ(ﬂ—‘ 1%/m % (Lo (t) — 0(a)

<wew72/ 5 1oy (1) — ()]

0o
2 w2

L = t ,L L ,L wo _wo
2 2dt<’w€2 — 2 2 2 =eze 2z =1,
w w w

w

and for w < 0,

o (w)] = |~ f—(<w)| < 1
hence | 1(w)] < | (w)| +1< 2.

Since f, is continuous and differentiable at all points w # = with uniformly bounded derivative, it is Lipschitz

and thus absolutely continuous. O

An immediate consequence of the preceding lemmas is

Theorem 10.3. A random variable W has the standard normal distribution if and only if
E[f'(W) =W [f(W)] =0
for all Lipschitz f.

Proof. Lemma 10.1 establishes necessity.

For sufficiency, observe that for any x € R, taking f, as in Lemma 10.2 implies

[P(W < 2) = ()| = |E [1(o0a) (W) = ()] | = [E[fo(W) = W fo(W)]] = 0. 0

The methodology of Lemma 10.2 can be extended to cover test functions other than indicators of half-lines.

Indeed, the argument given there shows that for any function i : R — R such that

Nh:=E[h(Z z)e‘édz

== [

exists in R, the differential equation

has solution

(*)  fa(w) = L"i/w (h(t) — Nh) e~ 7 dt.

Some fairly tedious computations show that

Fact 10.4. For any h : R — R such that Nh exists, let fr, be given by ().
If h is bounded, then

71'
ol < |5 1= Vbl 15l < 2010 N,

If h is absolutely continuous, then

1£nlloe < 2110 [l » IIfhlloo_\/»Ih’Iloo, £ loe < 21171l

(That the relevant derivatives are defined almost everywhere is part of the statement of Lemma 10.4.)
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We can now give bounds on the error in normal approximation for sums of i.i.d. random variables, which

will imply the central limit theorem.

We will work in the Wasserstein metric

dw(ZW),2(Z)) = sup |E[L(W)] - E[h(Z)]]

heHw

where
Hw = {h:R — R such that |f(z) — f(y)| < |z —y| for all z,y € R}.

If Z ~ N(0,1), then the preceding analysis shows that

dw (L (W), Z(Z)) = sup |E[fy(W) = W fr(W)]]

heHw
where fj is given by (x).

Since Lipschitz functions are absolutely continuous, the second part of Lemma 10.4 applies with ||A'|| = 1.

From these observations and some elementary manipulations we have

Theorem 10.5. Suppose X1, Xa, ..., X,, are independent random variables with E[X;] = 0 and E[X?] = 1
foralli=1,...n. If W= ﬁ Yo X and Z ~ N(0,1), then

dw(2W).2(2) < 5 Y E[1X[].

Proof. Let f be any differentiable function with f’ absolutely continuous, || f|| o, [[f/l|oc s /"l < 00.

For each : = 1,...,n, set

1
; Xj=W - =X
Then X; and W; are independent, so E[X; f(W;)] = E[X;]|E[f(W;)] =

It follows that

EWfW

gl

Adding and subtracting E {\% S Xi(W— Wl)f’(WZ)} yields

—= X (W) f(Wi))] .

EW IOV = | - Z X2 (FOW) — F(W) — (W W»f’(Wi))]
. f;xxw - W»f’(Wi)] .
The independence and unit variance assumptio;_s show that
BIX,(W — W) f'(W,)) = E [jﬁxffan] = BB (W) = Z=EIf (W),
BV = B | = E_j FOV) = (W =W (W) | + B |~ Z f’(Wi)] 7
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and thus

[E[f' (W) =W W]

= |B | 7= XX O0) = F0V) = (7 = W) (W) |+ |23 /(%) —E[f’(W)]‘
i=1 1=1
= |B | = S (W) = SO = (W = W) f (W) | +E | -3 (/W) —f’(W))H
< =B | IX (V) — fOV) — (W = W) £ (W)l + - B 371w - f’(W)]
=1 i=1
The Taylor expansion (with Lagrange remainder)
Fw) = £+ @) - 2) + L - 22
for some ¢ between w and z gives the bound
£w)— £2) — (w2 ) < w22
S0
inE > 1 (f(W)—f(Wi)—(W—Wz)f’(Wz))I] sinE > |x Hf”ll = (W —Wi)? ]
e 5 XN e © 3
=5 ;E X; (ﬁ) =3 ;E[|XZ| ]

Also, the mean value theorem shows that

B |1 W) - v ] Ha

> (1 Wi~ W] N Q“’ZEIXI
=1

As1=E[X}] = E [(mﬁ)g] < B[IXi"]", we have E[|Xi] > 1,50 E|Xi| < E[|X.]” < B [1X:f"].
(The conclusion is trivial if £ {|Xi\3} = 0.)

Putting all of this together gives

n

[BLf'(W) =W f(W)]| < %E DX (F(W) = F(W3) = (W = W) ' (W) +oE Z|f’(Wi)—f’<W>|]
" - n - 3 f// 30
s%;Eﬁxﬂ n‘ ZE\X|< ” ” ZE“X\}

and the result follows since

dw(ZL (W), Z(Z)) = sup |E[f,(W) =W f(W)]|
heHw

and ||fi/||, < 2]|h'|| =2 forall h € Hy. O

Of course the mean zero, variance one condition is just the usual normalization in the CLT and so imposes
no real loss of generality. If the random variables have uniformly bounded third moments, then Theorem

10.5 gives a rate of order n~2 which is the best possible.
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11 CONDITIONAL EXPECTATION

Let (Q, F, P) be a probability space and consider any A, B € F with P(B) > 0. In undergraduate probability,
we define the probability of A conditional on B as P(A|B) = P(AN B)/P(B).

The idea is that if we learn B has occurred, then we must update our probability measure to account for
this information. Our new measure, Pp, should satisfy Pp(B) =1 (since we know B has occurred) and, for
any E,F € F with E,F C B, Pg(E)P(F) = P(E)Pg(F) (since we have learned nothing about the relative
likelihoods of events contained in B). It follows that for any A € F,

Pp(4) = Pp(ANB) + Pp(AN BY) = Pp(AN B) = PBP(;4<;>B) B ngl(;f)

(The second equality is because we must have 1 = Pg(Q2) = Pg(B)+ Pg(B®) = 1+ Pg(B®), so monotonicity
dictates that events contained in B¢ have probability 0 under Pp.)

When thinking about conditional probability, it can be instructive to take a step back and think of a second
observer with access to partial information. Here we interpret (£, F,P) as describing a random system
whose chance of being in state w € €2 is governed by P. F represents the possible conclusions that can be
drawn about the state of the system: All that can be said is whether it lies in A for each A € F.

Now suppose that the observer has performed a measurement that tells her if B holds for some B € F with
P(B) € (0,1). If she found out that B is true, her assessment of the probability of A € F would be P(A|B).
If she found that B is false, she would evaluate the probability of A as P(A |B C). Thus, from our point of

view, her description of the probability of A is given by the random variable

[ PAB), weB
Xal )_{ P(A|BY), w¢B’

This is ultimately the kind of idea we are trying to capture with conditional expectation.

The typical development in elementary treatments of probability is to apply the definition of P(A|B) to

the events {X = z} and {Y = y} for discrete random variables X, Y in order to define the conditional

px.v (z,y)
py (y)

continuous X and Y by replacing mass functions with densities (which is problematic in that it treats pdfs

mass function of X given that ¥ = y as px(z|Y =y) = One then extrapolates to absolutely
as probabilities and raises issues concerning conditioning on null events). Finally, conditional expectation is

defined in terms of integrating against the conditional pmfs/pdfs.

In what follows, we will need a more sophisticated theory of conditioning that avoids some of the pitfalls,
paradoxes, and limitations of the framework sketched out above. Rather than try to arrive at the proper
definition by way of more familiar concepts, we will begin with a formal definition and then work through a
variety of examples and related results in order to provide motivation, build intuition, and make connections

with ideas from elementary probability.

Definition. Let (2, F, P) be a probability space, X : (Q,F) — (R, B) a random variable with E | X| < oo,
and G C F a sub-o-algebra. We define E[X |G], the conditional expectation of X given G, to be any random
variable Y satisfying

(i) Y € G (i.e. Y is measurable with respect to G)
(ii) J,YdP = [,XdPforall Acg

If Y satisfies (i) and (47), we say that Y is a version of E[X |G].
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Our most immediate order of business is to show that this definition makes good mathematical sense by

proving existence and uniqueness theorems.

To streamline this task, we first take a moment to establish integrability for random variables that fit the

definition so we may manipulate various quantities of interest with impunity.

Lemma 11.1. If Y satisfies conditions (i) and (it) in the definition of E[X |G], then it is integrable.

Proof. Letting A ={Y > 0} € G, condition (ii) implies

/YdP:/XdPg/ | X|dP,
A A A

/ (=Y)dP = — YdP = — XdP = (—X)dPg/ | X| dP.
AC AC AC AC AC
It follows that

E|y|:/de+/ (_y)dpg/\X|dP+/ I X|dP = E|X| < co. O
A AC A AC

The following existence proof gives an interpretation of conditional expectation in terms of Radon-Nikodym
derivatives. (Recall from Theorem 11.25 that if ;1 and v are o-finite measures on (5, S) with v < u, then
there is a measurable function f : S — R such that v( fAf dup for all A e S. f = —: is called the
Radon-Nikodym derivative of v with respect to p.)

Theorem 11.2. Let (2, F, P) be a probability space, X : (2, F) — (R, B) a random variable with E | X| < oo,

and G C F a sub-c-algebra. There exists a random variable Y satisfying

(i) Yeg
(ii) J,YdP = [, XdP forall Ac G

Proof. First suppose that X > 0. Define v(A) = [, XdP for A € G. Then P|; and v are finite measures on
(©,G). (That v is countably additive is an easy application of the DCT.) Moreover, v is clearly absolutely

continuous with respect to P. The Radon-Nikodym theorem therefore implies that there is a functlon €0

Such that

It follows that ¥ = —” is a version of E[X |G].
For general X, write X = X7 — X~ andlet Y; = E[XV|G], Y2 = E[X ™ |G]. Then Y = Y] — Y5 is integrable
and G-measurable, so for all A € G,

/YdP:/YldP—/YgdP:/XJFdP—/deP:/XdP. |
A A A A A A

Theorem 11.3. Y is unique up to null sets.

Proof. Suppose that Y’ is also a version of E[X |G].

/Y/dP:/XdP:/YdP
A A A

60

Condition (i7) implies that

forall Aeg.



By condition (i), the event A, = {Y — Y’ > ¢} isin G for all € > 0, hence
O:/ YdP—/ Y'dP:/(Y—Y’)dPZEP(Y—Y/ZS).
A. A. A.

It follows that Y < Y’ a.s. Interchanging the roles of Y and Y” in the preceding argument shows that Y’ <Y

a.s. as well, and the proof is complete. O

Proposition 11.4. IfY is a version of E[X |G] and Y’ € G withY =Y a.s., then Y’ is also a version of
E[X|G].

Proof. Since Y and Y’ are G-measurable, £ = {w : Y(w) # Y'(w)} € G. Since P(E) = 0, we see that for
any B € G,

/XdP:/YdP: YdP+/ YdP = Y dP
B B BNE B\E B\E

= Y'dP = Y’dP+/ Y’dP:/Y'dP. O
B\E B\E BNE B

Lemma 11.1, Theorem 11.3, and Proposition 11.4 combine to tell us that conditional expectation is unique
as an element of L'(Q, G, P). Just as elements of LP spaces are really equivalence classes of functions (rather
than specific functions) in classical analysis, conditional expectations are equivalence classes of random
variables. Here versions play the role of specific functions.

Often we will omit the “almost sure” qualification when speaking of relations between conditional expecta-
tions, but it is important to keep this issue in mind.

In light of Proposition 11.4, we can often work with convenient versions of E[X |G] when we need to make

use of pointwise results.

Examples

Intuitively, sub-c-algebras represent (potentially available) information—for each A € G we can ask whether
or not A has occurred. From this perspective, we can think of E[X |G] as giving the ‘best guess’ for the
value of X given the information in G. The following examples are intended to clarify this view.

Example 11.5. If X € G, then our heuristic suggests that F[X |G] = X since if we know X, then our best
guess is X itself. This clearly fulfills the definition as X always satisfies condition (i7) and condition (%) is
met by assumption.

Since constants are measurable with respect to any o-algebra, taking X = ¢ shows that E[c|G] = c.

Example 11.6. At the other extreme, suppose that X is independent of G—that is, for all A € G, B € B,
{X € B} and A are independent events. In this case, G tells us nothing about X, so our best guess is F[X].
As a constant, E[X] automatically satisfies condition (7).

To see that (44) holds as well, note that for any A € G,
[ BX)dP = EpXIP() = BXIEL) = BIX L) = [ xap
A A

by independence.

In particular, ordinary expectation corresponds to conditional expectation w.r.t. G = {Q, 0}.
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Example 11.7. We now expand upon our introductory example: Suppose that Qi,€s, ... is a countable
partition of Q into disjoint measurable sets, each having positive probability (e.g. B and BY). Let G =
o(Q1,Qs,...). We claim that E[X |G] = P(Q;) 'E[X; Q] on Q;. The interpretation is that G tells us which
Q; contains the outcome, and given that information, our best guess for X is its average over (2;.

To verify our claim, note that

E[X = ———1q.
X16)) =30 gy 1)
is G-measurable since each ; belongs to G. Also, since each A € G is a countable disjoint union of the ;’s,

it suffices to check condition (i7) on the elements of the partition. But this is trivial as

/P(Qi)_lE[X;Qi]dP:E[X;Qi}:/ X dP.

If we make the obvious definition P(A|H) = E[14 |H], then the above says that

PANQ)

P(A|g):P(Qi)_1/v1AdP: )

Q;

11 Qz

Example 11.8. Conditioning on a random variable can be seen as a special case of our definition by taking
EX|Y] = E[X|o(Y)]. To see how this compares with the definition given in undergraduate probability,
suppose that X and Y are discrete with joint pmf px y and marginals px, py. Then o(Y") is generated by
the countable partition {Y = y},crange(v), S0 the previous example shows that if F'|X| < oo, then

E[X|Y]=P(Y =y) 'E[X;{Y = y}] = ﬁZaﬂX =5Y =y = wa

x

on {Y =y}

Example 11.9. Similarly, suppose that X and Y are jointly absolutely continuous with joint density fx y
and marginals fx, fy. Suppose for simplicity that fy (y) > 0 for all y € R. In this case, if F|g(X)| < oo,

then E[g(X)|Y] = h(Y) where
fX Y(xv y)
h(y) = /g r)———dx.
) ) fr(y)
The Doob-Dynkin lemma shows that E[g(X)|Y] € o(Y). To see that the second criterion is satisfied, recall
that every A € o(Y) is of the form A = {Y € B} for some B € B, and a change of variables gives

z,
[ wwyar= [ ssar= [ 160 ( [ o005 ) fr) ay
(veB) B fy(y)
~ [ [s@natssr ey dedy = ElgCx1am = [ g(x)ap
{YeB}
Note that the condition fy > 0 is actually unnecessary since the above proof only needs h to satisfy

W) fy (y) = / o(2) fxy (2, y) de,

so h can take on any value at those y with fy(y) = 0. (Since fy(y) = [ fx,v(z,y)dz and fxy > 0, the
right-hand side of the above equation will also be 0 at such y.)
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Example 11.10. Suppose that X and Y are independent and ¢ satisfies E |o(X,Y)| < co. Then
Elp(X,Y)|X] = g(X)

where g(z) = Elp(z,Y)].
As in the previous example, condition () is satisfied by Doob-Dyunkin, and condition (i) can be verified by
letting p and v denote the distributions of X and Y, respectively, and computing

/{XGB}Q(X) dP:/Bg(f)du(x) :/13(1:) </<P($7y)dl/(y)) dp()

— [ [1a@ete i x ) = [ 1600000 Y) P = /{ gy PP

Properties

Many of the properties of ordinary expectation carry over to conditional expectation as they are ultimately

facts about integrals.

Proposition 11.11 (Linearity). E[aX +Y |G| =aF[X |G|+ E[Y |G]

Proof. Sums and constant multiples of G-measurable functions are G-measurable, and for any A € G

/(aE[X|g]+E[Y\Q])dP:a/E[X|Q]dP+/E[Y|g]dP
A A A
:a/ledP—k/AYdP:/A(aX%-Y)dP. 0

Proposition 11.12 (Monotonicity). If X <Y, then E[X |G] < E[Y |G].

Proof. By assumption, we have

/EX|g |dP = /XdP</YdP /EY|g

forall A€ G. Forany ¢ >0, A, ={w: E[X|G]| - E[Y|G] > e} €G,so

5P(A€)§/ (E[X\g]fE[Y|g])dP:/A E[X|g]dP7/A E[Y|G]dP < 0.

As
It follows that E[X |G] < E[Y'|G] a.s. O

Proposition 11.13 (Monotone Convergence). If X,, > 0 and X,, /' X, then E[X,,|G] /" E[X |G].

Proof. By monotonicity, 0 < E[X,,|G] < E[X,+1|G] < E[X|G] for all n. (The inequalities are almost
sure, but we can work with versions of the conditional expectations where they hold pointwise.) Since
bounded nondecreasing sequences of reals converge to their limit superior, there is a random variable Y with
E[X,|G] MY

Moreover, Y € G as it is the limit of G-measurable functions.
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Finally, applying the ordinary MCT to E[X, |G|l /' Y1g, invoking the definition of conditional expecta-
tion, and then applying the MCT to X, 1 / X1 shows that

n—oo n—0o0

/YdP— lim E[X |G]dP = hm/X dP = /XdP
B

for all B € G, hence Y is a version of E[X IG]. O

Note that since we have established a conditional MCT, conditional versions of Fatou and dominated con-

vergence follow from the usual arguments.

The final analogue we will consider is a conditional form of Jensen’s inequality. It is fairly straightforward

to derive conditional variants of other familiar theorems using these examples as templates.

Proposition 11.14 (Jensen). If ¢ is convex and FE |X|, E |p(X)| < oo, then
¢ (E[X|G]) < Elp(X)[G].

Proof. When we proved the original Jensen inequality, we established that if ¢ is convex, then for every
¢ € R, there is a linear function l.(x) = a.x + b, such that l.(c) = ¢(c) and l.(z) < ¢(z) for all z € R.

Let S = {(ar,b;)},cq- Then S is countable with az + b < ¢(x) for all x € R, (a,b) € S. Moreover, since Q
is dense in R and convex functions are continuous, we have p(z) = sup az + b for all x € R.
(a,b)es
Monotonicity and linearity imply that
Elp(X)|G] > ElaX +b|G] =aE[X |G] + b as.

whenever (a,b) € S.
As S is countable, the event A = {E[p(X)|G] > aE[X |G] + b for all (a,b) € S} has full probability.
Thus with probability one, we have

E[p(X)[G] = sup aB[X[G]+b= ¢ (E[X]|G]). 0

(a,b)eS

One use for conditional expectation is as an intermediary for computing ordinary expectations. This is

justified by the law of total expectation:

Proposition 11.15. F[E[X |G]] = E[X].
Proof. Taking A = Q in the definition of E[X |G] yields

:/XdP:/E[X|g]dP:E[E[X|g]]. 0
Q Q
As an example of the utility of the preceding observation, we prove

Proposition 11.16. Conditional expectation is a contraction in LP, p > 1.
Proof. Since ¢(z) = |z|” is convex, Proposition 11.14 implies that |E[X |G]|” < E[|X|"|G].
Taking expectations and appealing to Proposition 11.15 gives

E[EX|G)] < E[E[X]"|G]] = E[IX|]. 0
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Proposition 11.15 is actually a special case of the ‘tower property’ of conditional expectation.

This result is one of the more useful theorems about conditional expectation and is often summarized as
“The smaller o-algebra always wins.”
Theorem 11.17. If G, C Gs, then
EE[X|G1]]G2] = EE[X |G:]]G1] = E[X |G,].
Proof. Since E[X |G1] € G1 C Go, Example 11.5 shows that F [E[X |G1]|G2] = E[X |G1].
To see that F[E[X |G2]|G1] = E[X |G1], we observe that E[X |G1] € G; and for any A € G, C Go,
/E[X|gl]dP:/XdP:/E[X|(]2]dP. a
A A A

Proposition 11.15 is the case G = {Q,0}, Go = G.

The second criterion in our definition of conditional expectation can be expressed in more probabilistic
language as E[Y14] = E[X14] for all A € G. One sometimes sees the alternative criterion F[Y Z] = E[X Z]
for all bounded Z € G. The equivalence of the two conditions follows from the usual four-step procedure for
building general integrals from integrals of indicators. We will stick with our original definition as it is easier
to check.

The following theorem generalizes this alternative definition.
Theorem 11.18. If W € G and E |X|,E|WX| < oo, then EWX |G] = WE[X |G].

Proof. WE[X |G] € G by assumption, so we need only check the second criterion.
We first suppose that W = 15 for some B € G. Then for all A € G,

/WE[X|g}dP:/ 15E[X |g}dP:/ E[X |G]dP
A A ANB

= Xsz/lBXdP:/WXdP.
ANB A A

By linearity, we see that the condition [, WE[X |G]dP = [, WX dP also holds when W is a simple function.
Now if W, X > 0, we can take a sequence of simple functions W,, W and use the MCT to conclude that

/WE[X|g]dP: lim / W,E[X|G]dP
A n—oo A

= lim W,X dP :/ WX dP.
A

n—oo A

The general result follows by splitting W and X into positive and negative parts. |

Our last theorem about conditional expectation gives a geometric interpretation for square integrable X.
Namely, noting that L?(F) = {Y € F : E[Y?] < oo} is a Hilbert space and L?(G) is a closed subspace of
L?(F), we will show that if X € L?(F), then E[X |G] is the orthogonal projection of X onto L?(G).

Theorem 11.19. If E[X?] < oo, then E[X |G] minimizes the mean square error E[(X —Y)?| amongst all
Y eg.
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Proof. To begin, we note that if Z € L?(G), then E |ZX| < oo by the Cauchy-Schwarz inequality, so Theorem
11.18 implies ZE[X |G] = E[ZX |G].

Taking expected values gives
E[ZEIX|G]] = E[E[ZX |G]] = E[ZX],

showing that
BZ(X - E[X |6))] = E[ZX] - E[ZE[X |G]] = 0

for Z € L*(G).
Thus for any Y € L?(G), if we set Z = E[X |G] — Y, then we have

E[(X V)% = B [(X - EIX|9]) + 2)°]
= B[(X - BIX |g])] +2E (2 (X - E[X [6])] + E[2?]
— B|(X - B[X 9] + B2,
(Proposition 11.16 ensures E[X |G] € L*(G), so Z = E[X |G] — Y € L*(G) as well.)
It follows that E [(X — Y)?] is minimized over L?(G) when E[X |G] ~Y = Z = 0.
To see that E[X |G] minimizes the MSE over L°(G), we make use of the inequality
(a+b)* < (a+0b)?+ (a—b)? =24+ 2b°.

If Y € G is such that E[(X —Y)?] = oo, then it certainly doesn’t minimize the MSE since E[X |G] € L*(G)
with
E [(X — B[X |¢))?] < 2B[X?] +2E [E[X|G)?] < oo,

and if E[(X —Y)?] < oo, then

E[Y? = E[((Y — X) + X)?] < 2E[(X — Y)?] + 2E[X?] < . 0

Remark. In some treatments of conditional expectation, the Radon-Nikodym approach is bypassed entirely
by first defining F[X |G] for X € L?(F) in terms of projection onto L?(G), and then extending the definition
to X € LY(G) using approximating sequences of square integrable random variables. An upshot of this

strategy is that one can then prove the Radon-Nikodym theorem using martingales!

Example 11.20. Define the conditional variance of X given G as
Var(X |6) = E (X ~ E[X|9))*|9 | = E[X* 9] ~ E[X|g]*
Adding
E[Var(X |)] = B [B[X* |¢]] - E[E[X |¢)?
= B[X?) - B [E[X|G)]
to

Var (E[X |G])

E [(E[X|9] - B[X))]
E [E[X|G]?) - 2E[X]E [E[X |g]] + E[X]?
E

[E[X|91°] - E[X]?



yields the law of total variance
Var(X) = E[X?] — E[X]? = E[Var(X |G)] + Var (E[X |G]) .

The idea is that X € L?(F) can be decomposed into its projection onto L?(G) and the mean-zero error term
W = X — E[X |G]. The variability in X that is not explained by G comes from W, which has variance

Var(W) = E |(X — E[X |g])2} = F [E [(X — B[X|9))? |g” = E[Var(X |G)].
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APPENDIX

For the sake of completeness, we collect here some proofs of results that were left as facts to be accepted
in the main body of these notes. They appear in the order they were mentioned, and so are sometimes

anachronistic in terms of the concepts upon which they depend.

Regularity
Throughout this subsection, suppose that p is a complete measure on (R, M) arising from a distribution
function F. That is, for all £ € M,

mmm%fﬁmm>fmm B b))
= inf{iu((aj,bj]) : EC -OO (aj,bj}}.

Lemma 11.21. For any F € M, p(E) = inf { Z;}il w((aj,b)) : EC U;ﬁl(aj,bj)}.

Proof. Let v(F) denote the infimum appearing in the statement of the lemma. If £ C U;’;l(aj,bj), set
Ej = bj — aj and let Ij7k = (b7 — Qf%ubj — %) Then (aj,bj) = |_|zo:1 Ij7k, so B - Uj,keNIj)k and
Yooy ml(ag, b)) = 30, pew I k) > p(E), hence v(E) > u(E).

Conversely, given ¢ > 0, there exist {(aj7bj]};.;1 with £ C ;2 (a;,b;] and p(E) > 3772, p((aj,b5]) — e
Also, for each j, there exists §; > 0 such that F(b; +J;) — F'(b;) < 57. Thus £ C U;il(aj»bj +4;) and

o0 oo

Zu((aj,bj +4;)) < Zu((aj,bj]) +e < u(E)+2e
=1

j=1
so that v(E) < u(E) as well. O

Theorem 11.22. For all E € M,
w(E) =inf {u(U) : U is open and E C U}
= sup {pu(K) : K is compact and K C E}.
Proof. It U is open and E C U, then pu(U) > p(E). On the other hand, Lemma 2.3 ensures that we can
write U = U;il(aj»bj) so that u(U) < Zjoil 1((aj,b;)). Invoking Lemma 11.21 establishes the first claim.
For the second, suppose first that E is bounded. If E is also closed, then its compact so the second claim is

immediate. Otherwise, given & > 0, we can choose an open set U O E \ E such that p(U) < u(E\ E) +¢.
Then K = E\ U is a compact subset of F with E\ K = EN(ENU%)“ =EnN (FC UU) = FENU, hence

w(K) = p(E) —(ENU)
— W(E) — [u(U) — u(U \ E)]
> (E) — p(U) + w(E\ E) > u(E) — .

Finally, if F is unbounded, write E; = E N (j,j + 1] for j € Z. The preceding ensures that there is a

compact K; C Ej; with u(Kj) > wu(E;) — 557 Then H, = U?Z_n K, is a compact subset of E with

p(Hy) > 370 p(Ej) —3e = p (U;;_n Ej> — 3e. Since p(E) = limy, 00 pt (U_?:—n Ej), there is an N € N

with p (U;.V:_N Ej) > u(E) — ¢, hence pu(Hy) > p(E) — 4e. O
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In light of the preceding, we see that if p is a probability distribution on R, then for any E € B, € > 0,
there is an open set U O E with 0 < pu(U) — u(B) < €/2. Since U is a countable union of disjoint open
intervals, lim, o Sp_, #1((ax, bx)) = p(U) <1, so there is an N € N with p(U) < S0, pu((an, by)) + /2.

Consequently, ‘,u(B) — S n((an, bk))‘ < e. Thus every Borel set is almost a finite union of open intervals!

Lebesgue-Radon-Nikodym

Our first step in establishing the Lebesgue-Radon-Nikodym theorem amounts to a derivation of the Hahn
decomposition of a finite signed measure. [One can build up a theory of C-valued measures by considering
real and imaginary parts and then positive and negative parts. As we have no need for such generality in

this course, we’ll just state our results in terms of ordinary (positive) measures.|

Proposition 11.23. Suppose p and v are finite measures on (S,G). Then there is a set P € G such that
w(A) > v(A) if AC P and v(B) > u(B) if B C PC.

Proof. Write n = p — v and say that F' € G is positive for 7 if n(B) > 0 for all B C F. Our aim is thus to
find a set P € G such that P is positive for n and P is positive for —7. (In this case, we say that (P, P¢)
is a Hahn decomposition for 7).)

We first claim that for any A € G, ¢ > 0, there is a B C A such that n(B) > n(A) and n(E) > —e¢ for
all E C B. If not, there is an E; C A such that n(E;) < —e. Since n(A \ E1) = n(A) — n(E1) > n(A4),
there is an Fy € A\ E; with n(E2) < —e. Continuing thusly gives a sequence {E,} of disjoint sets with
w(Ey) —v(Ey,) =n(E,) < —¢ for all n. But then for every N € N, Ex = |_|nN=1 E,, has the property that
wEN) —v(EN) = EnNzl[u(En) —v(E,)] < —Ne, hence v(Q) > v(En) > u(En) + Ne > Ne, contradicting
the assumption that v is finite.

Next, given A € G, let A; = A and inductively pick A,, C A,,_; such that n(A,) > n(A,—1) and v(B) > —
for all B C A,. Let F = (), A,. Then F is positive for n and continuity from above implies 7(F)

limy, 00 7(An) = n(A).

Now let a@ = sup{n(A4): A € G}. Then the preceding ensures we can choose a sequence {P,} in G such

1
n

that each P, is positive for n and lim,,_,~ n(P,) = a. Continuity from below shows that P = |, P, is
positive with n(P) = a. Moreover, n(B) < 0 for all B C P since otherwise we would have n(P U B) =
n(P) +n(B) > a.

Finally, we observe that if P’ is any other set having this property, then P'\ P C P" and P\ P C P%, so
0 < n(P"\ P) <0, and likewise for P\ P’. It follows that u(PAP’) — v(PAP’') = n(PAP’) = 0, so this
decomposition is unique up to sets on which p and v agree. O

Proposition 11.23 gives us the following useful characterization of mutual singularity.

Lemma 11.24. Suppose u and v are finite measures on (S,G). FEither u L v or there existe >0, E € G

with w(E) > 0 and v(B) > eu(B) for all B C E.

Proof. For each n € N let (P,, P¢) be a Hahn decomposition for n, = v —n~'u. Set P = (J—, P,.

Then P¢ = (2, PC satisfies v(B) — n~'u(B) < 0 and thus 0 < v(B) < n~1u(B) for all B C P¢,

n € N. In particular, v(PY) = 0. If (P) = 0, then L v. Otherwise, u(P,) > 0 for some n € N and

v(B) —n~tu(B) > 0, hence v(B) > n~tu(B) for all B C P,. O
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At this point, we observe that if y is a finite measure on (S,G) and f : S — [0,00) is integrable, then
V(E) = [, fdu = [ flgdp is also a finite measure. Indeed, if E = | |7 Ej, writing F,, = | [_, Ex, we
have that F,, * E,so flg, / flg pointwise. Monotone convergence and linearity then give

V(E)—/flEdM:/ lim f1p, dp= lim /le“ dp
nli_ggo/fZlEkdu— lim Z/flEkdu 2 v(E}).

1

Moreover, if (E) = 0, then f1g =0 p-a.s., hence v(E) = [ flgdu = 0—that is, v < p.

The Radon-Nikodym theorem asserts that the converse is true—if v < p, then dv = fdpu in the sense that
v(E) = fEfdu for all E € F. We call f = Z—Z the Radon-Nikodym derivative of v with respect to p.
Additionally, the Lebesgue decomposition theorem says that we can uniquely express v as a sum of measures
that are absolutely continuous/singular, with respect to p. The following theorem combines these statements.

Theorem 11.25. If i and v are finite measures on (S, G), then there exist unique measures p, A with p < p,
AL p, and v =p+ A. Moreover, there is an integrable v : S — [0, 00) with p(E fE wdu for all E € G.

Proof. Define & = {f : S — [0,00) : fEfdu <vy(E)foral F € g} & is nonempty since it contains
f=0. Also, if f,g € Z, then sois h = max{f,g}: f A={z € S: f(z) > g(x)}, then h = fls + glyc
satisfies [ hdp = fEnAfd,u—i— Jpoac 9dp <v(ENA)+v(ENA%) = v(E).
Let s =sup{ [ fdu: f € F},sothat s < v(S), and choose a sequence {f,,} in .Z with [ f, du — s. Define
gn = max{fi,..., fn} and ¢ = sup,, f,. Then g, € .Z, g, increases pointwise to ¢, and [ g, dp > [ f,dp
for all n. It follows that ¢ € % and, by monotone convergence, [ ¢du = lim, o0 [ gn du = s.
Setting p(F) = ngodu, we have that p < p and p(F) < v(E) for all E € G. This shows that A\ :=v — p is
a (positive) measure on (5,G). Moreover, it must be the case that A L p because otherwise there would be
some F' € G, ¢ > 0 with u(F) > 0 and v(B) — p(B) = A(B) > eu(B) for all B C F. But then f = p+¢lp
satisfies [, fdu=p(ENFO)+ [p(ENF)+eu(FNE)] <v(ENFY) +v(ENF)=v(E), hence f € .7, and
[ fdu=s+eu(F) > s, a contradiction.
For uniqueness, suppose v = p’ + X' is another such decomposition. Then there are sets F;, F» € G with
w(E1) = p(Ey) = 0 and M(EY) = N(ES) = 0. Writing E = E; U Es, so that E¢ = EY N EY, we see that
w(E) = 0 (hence p(E) = p'(E) = 0) and A\(E®) = N (EY) = 0. It follows that for any A € G, A\(A) =
MANE)=v(ANE)=)XN(ANE)=X(A) and p(A) = p(ANE®) =v(ANE®) =p(ANEY) = p'(A). O

(S,G, 1) is o-finite if S is a countable union of sets having finite p-measure; Lebesgue measure on R is such
an example. If x4 and v are o-finite measures on (5,§G), we can write S = |_|;’i1 S; with p(S;),v(S;) < oo
for all j. Applying the preceding to the restrictions of ;1 and v to each S; and then recombining the pieces
shows that the finiteness assumption can be weakened to o-finiteness.

Riemann-Lebesgue

Suppose f is an R-valued function defined on a bounded interval [a,b]. Let P = {zo,x1,...,2,} be a
partition of [a,b] (so a =z < 21 < --- < x, = b), denote its mesh by |P| = maxi<g<n(zr — xx—1), and let

T ={t1,...,t,} be a sequence of tags for P (so ¢ € [zx_1,zk]). The associated Riemann sum is given by

R(f,P,T)= thk )@k — Tp—1).

70



We say that f is Riemann integrable over [a,b] if there exists I € R such that for every ¢ > 0, there is a
d > 0 such that any tagged partition (P, 7) with |P| < ¢ satisfies |[R(f,P,T) — I| < e. In this case, we write
I= f; f () dt, the Riemann integral of f over [a,b].

Alternatively, given a partition P of [a, ], define M; = sup,¢(,._, ,.) f(t) and m; = infie,; , 41 f(t). Define

the upper and lower Darboux sums by

= Mj(x; — ;1) V(f,P) =Y myx; —x1).
j=1 j=1

Necessarily V(f,P) < R(f,P,T) < U(f,P) for all (P,T). Moreover, if P’ refines P in the sense that
P CP’, then one has V(f,P) < V(f,P") <U(f,P") <U(f,P). It can be shown that Riemann integrability

is equivalent to supp V(f,P) = infp U(f,P), in which case the common value is fab flt)dt

Theorem 11.26. Let f be a bounded function on the finite interval [a,b] and let m denote Lebesgue measure.

(1) If f is Riemann integrable, then it’s Lebesgue measurable (and thus integrable since it’s bounded), and
b
[, f(x)de = f[a,b] fdm.
(2) f is Riemann integrable iff m ({x € [a,b] : f is discontinuous at x}) = 0.

Proof. Suppose f is Riemann integrable. For each partition P = {xg,...,x,} of [a,b], define gp =
i Ml 2y and Gp = 350 Myly,, o)) where my = infier,,_, o1 f(t) and M; = supepy, . ()
By assumption, there is a nested sequence of partitions P; C Py C --- such that limg_ o V(f,Pr) =
limg 0o U(f, Pr) f f)dt. Let G = limg0o Gp, and g = limg00gp,. Then g < f < @G, and
by dominated convergence, [Gdm = f; ft)dt = [gdm. It follows that [(G —g)dm =0, s0o G =g
almost everywhere, hence f = G a.e. Since G is a limit of simple functions, f is measurable with
ffdm:dem:fabf(ac)dx

To prove the second statement, define H(z) = limsup,_,, f(y) and h(z) = liminf, ,, f(y). Note that f is
continuous at x iff H(xz) = h(x). Also, using the notation from the first part, H = G and h = g on a set
of full measure, hence both are measurable/integrable with f[a,b} Hdm = [ Gdm and f[a,b} hdm = [ gdm.
The result follows since f is integrable iff [ G dm = [ gdm iff H — h > 0 vanishes outside a null set. (]

Product o-fields

Definition. Given an indexed collection of measurable spaces {(Sa,Ga)}aca, the product o-field, @ ¢ 4 Ga,
on S =[] ca Sa is generated by {75'(Gs) : Go € Go,a € A} where mo : S — S, is projection onto the o

coordinate.

The product o-algebra is thus the smallest o-algebra for which the projections are measurable. This is because
we want a function taking values in the product space to be measurable precisely when its components are.

Proposition 11.27. If A is countable, then &), 4 Gu is generated by the rectangles { [locaGa:Ga € ga}.

If, in addition, G, is generated by &, for every a € A, then @, c 4 Go is generated by {HaeA E,:FE, € Ea}.

Proof. If Gy € Ga, then 7' (Go) = [[5c 4 Gp where Gg = Sp for all 5 # a, hence

o ({7:"(Ge) : Ga € Gara€ A}) Co({ [] Ga:GaeGal).

acA
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On the other hand, [T c 4 Ga = Naca ™o (Ga), s0

o({ T] Ga:Ga€Ga}) Co({ra(Ga) i Ga € Gaa € A}).
a€cA

The second statement will follow from the above argument once we show that @4 o is generated by
Fi = {n Y (Es) : Eq € Eq,a € A}. To this end, observe that 71 C {r;'(Ga) : Ga € Ga,a € A} by
construction, so o(F1) € @ ,ca Ga-

Conversely, arguing as in the proof of Theorem 4.2 shows that for each a € A, {E C S, : 7,1 (E) € o(F1)}
is a o-algebra containing &, (and thus G,), so 7, (E) € o(Fy) for all E € G,, and we conclude that

(e

o ({731 (Ga): Ga € Go,a € A}) C o(F1) as well. O

Proposition 11.28. If Sy,..., S, are separable metric spaces and S = [[_, S; is equipped with the product
metric, then Bx = @, Bs,.

Proof. By Proposition 11.27, @', Bg, is generated by {m; '(U;) : U; is open in S;,i € [n]}. Since each
7, '(U;) is open in S, @], Bs, C Bs.

For the reverse inclusion, suppose D; = {z; 1}, is a countable dense set in S; for each ¢ € [n] and let
& = {Br(xiyk) creQt ke N} be the collection of balls of rational radii centered at the x; ;. For each
open U C S, z € U, there exist x; 5, € D;, i € [n], and r € QT such that z € [, B.(w;x,) € U.
Accordingly, U can be written as a union of such products. As each &; is countable, this union must be as
well, and we conclude that Bs C @, Bs;. O

Corollary 11.29. If £ is any of the collections from Theorem 2./, then B? is generated, by the semialgebra
of rectangles R = {J1 XX Jg: Jp € 5}.

Convex Functions

Lemma 11.30. If ¢ : R — R is convez, then for all x < y < z,

py) —p(x) _ ¢(2) —p(r) _ e(z) = oy)
y—x - zZ—x - zZ—y '

Proof. Writing A = 4= < (0,1), we have y = Az + (1 — \)z, so it follows from convexity that

—x

o(y) < Ap(z) + (1 = N)p(zx), and thus

o(y) — (@) < A(p(2) — p(x)) = (p(2) — p(x)) .

zZ—XT

Dividing by y — « > 0 gives the first inequality.
Similarly, setting u = =2 =1 - X € (0,1), we have y = pz + (1 — p)z, so ¢(y) < pp(x) + (1 — p)e(z), and
thus

o) = 9(2) < plp() = 9(2)) = T (plx) = o(2)),

Z—T

hence
o(2) = plx) -
z—y Z—x




Proof of Fact 7.3. For any h > 0, taking x = c¢—h, y = ¢, 2z = ¢+ h in Lemma 11.30, it follows from the

outer inequality that that
ple) —ple=h) _ pleth) = p(c)
h - h '
Also, for any 0 < hy < hg, we have ¢ — he < ¢ — hy < ¢, so the second inequality in Lemma 11.30 shows that
w(C)—c}f(c—hz) < w(C)—i(c—hl)_
2 - 1

Similarly, since ¢ < ¢+ h; < ¢ + hg, the first inequality in Lemma 11.30 shows that %;_W >

@leth)—g(c)
h1 )

Consequently, the one-sided derivatives exist and satisfy

¢y(c) == lim ple) =ple=h) < lim

p(c+h) —¢(c)
h—0+ h ~ h—0t h

= ().

Now let a € [¢](c), ¢,(c)] and define the linear function ¢(z) = a(xz — ¢) + ¢(c). Clearly, £(c) = ¢(c).
<

/
To see that £(z) < ¢(z) for all z € R, note that if z < ¢, then z = ¢ — k for some k > 0, so

e(m)—so(x)—a<x-c>+¢<c)_¢(c_k)__k.(a_W) 0

since W < ¢j(c) < a by monotonicity. The x > ¢ case is similar. O

Fubini-Tonelli

Lemma 11.31. Suppose that (R, F,u) and (S,G,v) are probability spaces. For E€ F®G, x € R,y € S,
define E, ={y€S: (z,y) € E}, E,={x € R: (z,y) € E}. Then
(1) E, €6, Eye F forallz e R,ye S

(2) The maps x — v(E,), y — u(Ey,) are measurable functions on R and S, respectively,
(8) (uxv)(E)= [pv(E)du(z) = [¢ u(Ey) dv(y) for all E€ F®G.

Proof. Let L be the set of all E € R x S for which the conclusions of the lemma obtain.

If Ac F,BeG, then (AxB),=Bforr€ Aand (Ax B), =0 forz € A° so (Ax B), €Gforallz € R
and v((A x B),) = v(B)14(z) is a measurable function of  with

(05 V)(A  B) = w(AW(B) = v(B) [ 1a(@)dut@) = [ v((4x B).) du(o).

The analogous claims hold for the y-slices, so the 7-system R = {A xB:Ae F,Be¢ Q}, which contains
R x S and generates F ® G, is contained in L.

If E,F € £ with E C F, then E, C F, and (F\ E), = F, \ E, so v((F\ E),) = v(F,) — v(E,) is a

difference of measurable functions with
(1 x V)(F\ E) = (1 x )(F) — (1 x v)(E)

:/Ry(Fw)dp(a:)—/ v(Ey) dp(x)

R
— [ WF) (B due) = [ (P \E)) dita).
R R

Repeating the above with y shows that L is closed under subset differences.
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Finally, if {Ey} C £ with Ey M E, then (Ey). 7 E, so U(Em) = lim, oo V((Ek)x) is a limit of measurable

functions with

(pxv)(E) = lim (uxv)(Ep) = lim [ v((Ep)s)dp(z) = /RI/(EQE) du(x)

n—oo n—oo R

by monotone convergence. As the same holds for y, we see that £ is a A\-system and the proof is complete. [

Proof of Fact 7.13. Given probability spaces (R, F,u) and (S,G,v), suppose first that f(z,y) = 1E((x,y))
for some F € F ® G. Then Lemma 11.31 implies

patex ) = () = [ B a) = [ ([ 1at o) o)

[ vEane = [ ([ i) duto)

This extends to simple functions by linearity, then nonnegative functions by monotone convergence. That

RxS

proves Tonelli’s theorem and Fubini follows by considering positive and negative parts. (Il

Kolmogorov Extension

Proof of Fact 7.1/. Let {u, 52, be a consistent sequence of probability measures, let S be the semialgebra
of cylinder sets, and define Py : S — [0, 1] by

Py ({w e RY 1w € (a;,b:],1 < i< n}) = pn ((a1,1] X -+ X (an, by)) .

Next, let S be the algebra generated by S and define P : S — [0,1] by P (Ly_, Sk) = Sr_, Po(S) for
S1, ..., Sy disjoint sets in S. It’s easy to check that, Py and thus Pis finitely additive.

As S generates BY, it suffices to show that Pis countably additive and thus a premeasure on S. We do so
by proving that if {B,} -, is a sequence of sets in S with B, \, 0, then ?(Bn) N 0.

Indeed if {4;}3°, is a countable collection of disjoint sets in S such that A = [ J;2, 4; € S, then for any n € N,
B, =2, A; = A\UZ;' A belongs to the algebra S, so finite additivity gives P(A) = Y27 P(A;)+P(B,).

To further simplify our task, let F, be the sub-c-algebra of BN consisting of all sets of the form E =
E* xR xR x--- with E* € B™. We’ll use this asterisk notation throughout to denote the ‘8™ component’
of sets in F™.

We begin by showing that we may assume without loss of generality that B, € F, for all n.

To see this, note that B,, € S implies that there is a j(n) € N such that B, € F for all k& > j(n). Let
k(1) = j(1) and k(n) = k(n — 1) + j(n) for n > 2. Then k(1) < k(2) < --- and B, € Fy) for all n. Define
B; = RN for i < k(1) and B; = B, for k(n) <i < k(n+1). Then B, € F, for all n and the collections
{Bp} and {En} differ only in that the latter possibly includes RY and repeats sets. The assertion follows

since By, \, 0 if and only if B, \, 0 and P (En) N\, 0 if and only if P (B,) \, 0.

Now suppose that ﬁ(Bn) > 6 > 0 for all n. (Since P is monotone and B, N 0, this is equivalent to
JB(BH) # 0.) We will derive a contradiction by approximating the B} from within by compact sets and then

using a diagonal argument to obtain (), By, # 0.
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Since B,, is nonempty and belongs to S N F,,, we can write
n
U w:iw; € (aik,bikl,i=1,...,n} where —oo <a;) < by < cc.

By a continuity from below argument, we can find a set E,, C B,, of the form

K(n)
E, = U {w Tw; € [ﬁi)k,bi)k],i =1, 7n} , —00 < Adi7k < bi,k < 00,

k=1
with i, (Bj \ E;) < -
Let F,, = ﬂm 1 Em. Since B, C B,, for any m < n, we have

B, \F,=B,nN <U Eﬁ) = U (B.NES) C U (B, NES),
m=1 m=1 m=1

hence

3
w\oq

W(BE\FY) < Z (B \ EX) <

=1

As pn(B2) = P(B,) > 4, this means that p,(F?) > g , hence F' is nonempty.

Moreover, E? is a finite union of closed and bounded rectangles, so
Fr=En(E_xR)N---N(E xR

is compact.

For each m € N, choose some w™ € F,,,. As F,,, C Fy, w}" (the first coordinate of w™) is in F}.

m(1,5)

By compactness, we can find a subsequence m(1, j) > j such that w; converges to a limit 6; € Fy.

For m > 2, F,,, C Fy, so (w]*,wy") € Fy. Because F¥ is compact, we can find a subsequence of {m(1,j)},
(29 converges to a limit 0 with (01,02) € Fy.

m(n,j)

which we denote by m(2, ), such that wy"

In general, we can find a subsequence m(n,j) of m(n — 1, j) such that wy converges to 6,, with

(01, ~-~79n) S F;
Finally, define the sequence w(i) = w™(®", Then w(i) is a subsequence of each w™(7), 50 lim; o0 w (i) = O
for all k. Since (64, ...,0,) € E} for all n, 0 = (01,0, ...) € F,, for all n, hence

0 € ﬁ F, C ﬁ B,
n=1 n=1

a contradiction! O

Generalized WLLN

Theorem 11.32. For eachn € N, let X, 1, ..., Xn.n be independent. Let {b,}52, be a sequence of positive

numbers with lim,,_, b,, = oo and let )N(nyk = X, ,1{|Xn k| < bp}. Suppose that as n — oo
(1) Y P (I X0 k| > bn) =0
(2) b2 | E [)?gk} 0.

Ifwelet S, =1 1 Xppanda, =5, | E [)Enk} , then
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Sn—an

Proof. Let §n = 22:1 )Z'n’k. By partitioning the event { >

we see that
Sn — Qan
pll|2r—"n

To estimate the first term, we observe that

> 5} according to whether or not S,, = gn,

S, —ay
bn

>5> gp(sn¢§n)+p<

n

P(S, #8,) <P (U (X # )?n,k}> <3P (Xn,k ” )?mk) =3 P(IXuil > ba) = 0.
k=1

k=1 k=1

For the second, we use Chebychev’s inequality, F [gn] = a,,, the independence of the )?n’k’s, and our second

assumption to obtain

g

Sp —an

bn

~ 2
> 6) <e’F <S”b_a"> = & 2b,2Var(S,)

~emy v 5] < (13 p [ ) o 0
k=1 k=1

Theorem 11.32 was so easy to prove because we assumed exactly what we needed. Essentially, these are the
correct hypotheses for the weak law, but they are a little clunky so we usually talk about special cases that

take a nicer form.

To prove our weak law for i.i.d. sequences, we need the following simple generalization of Proposition 6.6.

Lemma 11.33 (Layer cake representation). If Y >0 and p > 0, then

E[Y?] =/ py? T P(Y > y) dy.
0

Proof. Tonelli’s theorem gives

/ P {y <Y} dy> dp

0

(
/Q(/prypldy> dP:/QYde:E[Yp]. 0

We now have all the necessary ingredients for a

Proof of Fact 8.13. We will apply Theorem 11.32 with X,, , = X and b,, = n (hence a,, = nyy).

The first assumption is satisfied since

> P (|Xnxl >n) =nP(|X1| >n) = 0.
k=1

For the second assumption, we have )Z’nk = X, 1{|Xk| < n}, so we must show that
1 [ 1 & (o
—B X2, = 5 Y B[R] -0
k=1
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Lemma 11.33 tells us that
E [)?7211} :/ 2yP (‘an
0

since P (‘)Z'nl > y) =0fory>nand P (’an

be done once we prove

> y) dy S/ 2yP (| X1| > y)dy
0

> y) =P (|X1]| >y) — P(|X1| > n) for y < n, so we will

1 n

w [ p x> way o

nJo

To see that this is the case, note that since 2yP (] X;| > y) — 0 as y — oo, for any £ > 0, there is an N € N
such that 2yP (| X1| > y) < & whenever y > N. Because 2yP (| X1| > y) < 2N for y < N, we see that for all
n> N,

1 (" 1 (N 1 [
—/ 2yP<|X1|>y>dy:—/ 2yP<|X1|>y>dy+f/ 2P (1X,| > y) dy
n Jo n Jo nJn

IR o 2N? ~N
g—/ 2Ndy+—/ 5dy=—+n £,
nJo nJn n n
hence " N2 N
1 2 —
limsupf/ 2yP(|X1|>y)dy§limsup—+n € =¢,
n—oo N Jg n—00 n n
and the result follows since € was arbitrary. ]

Example 11.34 (The St. Petersburg Paradox). Suppose that I offered to pay you 2/ dollars if it takes j
flips of a fair coin for the first head to appear. That is, your winnings are given by the random variable X
with P(X = 27) = 277 for j € N. How much would you pay to play the game n times? The paradox is that

ElX] = Zj’;l 27 . 277 = 0o, but most sensible people would not pay anywhere near $40 a game.

Using Theorem 11.32; we will show that a fair price for playing n times is $log,(n) per play, so that one

would need to play about a trillion rounds to reasonably expect to break even at $40 a play.

Proof. To cast this problem in terms of Theorem 11.32, we will take X1, X, ... to be independent random
variables which are equal in distribution to X and set X,, = X). Then S,, = ZZ=1 X} denotes your total
winnings after n games. We need to choose b,, so that

nP(X >by) = > P(Xpx > by) — 0,
k=1

b%E [X21{X <b,}] =6, F [(Xn’,@ {1 Xl < ba})?] = 0.

" k=1
To this end, let m(n) = logy(n) + K(n) where K(n) is such that m(n) € N and K(n) — oo as n — oo.

If we set b, = 2™(") = n2K(™) we have

nP(X >by)=n Y 27 =n27mmW =27K0
i=m(n)+1
and
E[X"1{X <ba}] = Y 2%-27' =2m(WF —2 <oy,
i=1
so that 5
n n _K(n
wh (X21{|X| <bn}] < b= 9K+ 0,
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Since
m(n)

n
an = ZE Xk 1 {| Xk <0} =nE[X1{X <b,}]=n Z 21. 27" = nm(n),
k=1 i=1
Theorem 11.32 gives
Sy —nlogy(n) — nK(n)

oK (m) —p 0.
If we take K(n) < log, (logy(n)), then the conclusion holds with nlog,(n) in the denominator, so we get
_ S » L. U
nlogy(n)

SLLN

Theorem 11.35 (Strong Law of Large Numbers). Suppose that X1, Xo, ... are pairwise independent and
identically distributed with E |X1| < co. Let S, = > Xi, and p = E[X1]. Then 1S, — u almost surely

as n — Q.

Proof. We begin by noting that X;” = max{X},0} and X, = max{—Xj,0} satisfy the theorem’s assump-

tions, so, since X = X,j — X, , we may suppose without loss of generality that the X}’s are nonnegative.

Next, we observe that it suffices to consider truncated versions of the X} ’s:

1 1
Claim 11.36. If Y}, = X3 1{X), <k} and T, = Y, _, Y, then =7, — p a.s. implies —S,, — p a.s.
n n

Proof. Lemma 11.33 and the fact that G(¢) = P (X; > t) is nonincreasing imply

e’} [e’e) [e’s} %)
Y P(Xp#Yi) =Y P(Xpe>k)=) P(X1>k) g/ P (X, >t)dt = E|X;| < oo,
k=1 k=1 k=1 0

so the first Borel-Cantelli lemma gives P(X}) # Y i.0.) = 0. Thus for all w in a set of probability one,

S/I'L n .
sup,, | Sy (w) — T, (w)| < oo, hence i ; — 0 a.s. and the claim follows. O

The truncation step should not be too surprising as it is generally easier to work with bounded random
variables. The reason that we reduced the problem to the X; > 0 case is that this assures that the sequence

Ty,T5, ... is nondecreasing.

Our strategy going forward will be to prove convergence along a cleverly chosen subsequence and then exploit

monotonicity to handle intermediate values.
Specifically, for a > 1, let k(n) = |a™], the greatest integer less than or equal to a™.

Chebychev’s inequality and Tonelli’s theorem give

- o Var (Tin)) PR -2 =
n=1 n=1 n=1 m=1
=e > Var(Yy) Y, k(n)P<e ) E[VZ] > o] R
m=1 n:k(n)>m m=1 n:a™">m
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Since |a™]| > %a" for n > 1 (by casing out according to o™ smaller or bigger than 2),

Z LanJ -2 <4 Z a2 < 4oy 2108am iafwz _ 4(1 _ 0472)71771727

n:a”>m n>log, m n=0
hence
Y P ([T = B [Tiw]| > ek(m) <72 Y E[YZ] > [a"] 7
n=1 m=1 n:a”>m

00 2
<4l-a )ty %
m=1

=, E[Y?
Claim 11.37. Z Vo) < 0

m2
m=1

Proof. By Lemma 11.33,

E[Y] =/ 2yP(Yy, > y)dy = / 2yP (Yo > y)dy < / 2yP(X, > y)dy,
0 0 0

so Tonelli’s theorem gives

Z E,’Ei/;n} < Z m—2 /m QyP(Xl N y)dy _ 2/00 <y Z m2> P(Xl > y)dy
m=1 0

m>y

Since / P(X; > y)dy = E[X;] < 00, we will be done if we can show that y Z m~? is uniformly bounded.
0 m>y

To see that this is the case, observe that

for y € [0,1], and for j > 2,

m=j
SO -
yY m =y Y m?<L<o
m>y m=|y]+1 Ly
for y > 1. O

It follows that Z P (|Tk(n) - F [Tk(n)” > 5k(n)) < 00, S0, since € > 0 is arbitrary, the first Borel-Cantelli
n=1

Ti(n) = E [T

lemma implies that — 0 a.s.
k(n)
, _ : . E[Tiw]
Now khm E[Y;] = E[X1] by the dominated convergence theorem, so lim,, O E[X;4].
hde el
Len)
Thus we have shown that F(n) — p almost surely.
n
Finally, if k(n) < m < k(n + 1), then
k(n) Ty T(n) T _ Tty Tty k(n+1)

kn+1) k() k(n+1) =

since T, is nondecreasing.

k(n) — k(n+1)  k(n)



k 1 an-{—l
Because (n+1) = L J — «a as n — 0o, we see that

k(n) Lan]

Th .. T
Ll <liminf — < limsup — < apu,
m

@ n—oo M n—00

and we're done since a > 1 is arbitrary. ]

Stein Bounds

We begin with a bound on the complementary error function, 1 — ®(w) = T /.

Lemma 11.38. For all w > 0,

W w? < e 1 _w?
3 ez < e 2 dt < —e 7.
w? +1 w w

Proof. The upper bound follows by observing that

> 2 ¢t 2 1 > 1 2 9
e zdt < —e zdt =w" e tdu =w te v /2,
w w W w?/2

w 2

T37e” = . One easily checks that g(0) = /7/2, ¢'(w) =
« < 0, and limy o0 g(w) = 0, so it must be the case that g(w) > 0 for all w > 0.

For the lower bound, define g(w) = [° e~ dt —

_w? 1—2w?—w

R v vy
(Note that the lower bound holds trivially for w < 0.) O

4

Proof of Fact 10.4. Define h(w) = h(w) — Nh and ¢y = ||?L||Oo, and let ¢; = ||W| if h is absolutely

continuous and ¢; = oo otherwise. Since h and f, are unchanged if h is replaced by h — h(0), we may assume
that h(0) = 0. Thus |h(t)] < 1 |t| and |[Nh| < 1 E|Z| < ¢14/2/7.
We begin by bounding the sup norm of

fh(w):ew;/ ht)e 5 di
:fesz/ E(t)efédt.

Applying the upper bound from Lemma 11.38 shows that for all w > 0

d ‘Lu2 o0 t2 w2 o0 t2 w2 w2
d—eT/ e_Tdt:weT/ e zdt—eze 2z <0.
w w

w

“4'2 2 . . . . . . . . 2
It follows that e f‘f‘ e~ T dt is minimized at w = 0, in which case its value is ;" e~ Tdt = /7/2.

Consequently,
e I, ‘?L(t)‘ efédt, w <0
e [ ‘iNz(t)‘ e’édt, w>0
w? ° t2 > t2
< ez min {co/ e zdt, cq / (t + \/2/7‘1’) e_Tdt}
[w] Jw]
< min {\/W/Qco,ch} .
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Next we consider f; (w) = wfp(w) + iNz(w) By our previous analysis, when w > 0, we have

w2 o~ 2
we 2 / h(t)e” z dt

w? > t2
< co 4 cowe 2 / e 2 dt < 2¢g.
w

Fh(w)] < [w)| +

A nearly identical argument gives | f; (w)| < 2¢q for w < 0, completing the proof of the claims for & bounded.

If h is absolutely continuous, then

h(t) — Nh = — h(z)|e™ % de

=/ ~in

t ot
:\/%/ /h’(u **dudz——/ /h Ve 5 duda
TJ—coJx
t u
:\/%/ / R (u) *dxdu——/ / B (u ~% dedu
T J—0J—x

= /_:O B (w)®(u) du — /too W (u) (1 = ®(u)) du,

7 o= e ([ e [ [ - owhe )
Lol ). /hw (/b0
Ll
:/_U;oh’(u) (w)[®(w) - —/_ - w) du
- :o“ )1~ () D) du

:—/j;h’ <I>(u / du,

fo(w) = T R (u)®(u) du + ®(w h B (u)(1—@(u)du ).
Vot (v [ ) )

Combining these representations yields

fr(w) = wfn(w) + h(w) — Nh

=— 27rwew22< / B (u)®(u) du + ®(w /w )
/h / W (w)(1 - ®(u)) du

- [1 Srwes (1 - d(w ))] /w B (w)®(u) du
(

hence

— {1 +Vomwe's @ w)} /woo W (u)(1 — ®(u)) du.
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Since integration by parts shows that

/_Oo D(u) du = wd(w) — VA ue” 7 du = wd(w) + \/ﬂe ,
%) oo .2 1 w2
/w [1—®(u)] du:—w(l—q)(w))—l—/w ue” 7 du = —w(l — ®(w)) + \/ﬂe T

we conclude that

< 91 sup [[1 = VErwe (1 o) | (wdw)+ e )

V2r
+’l+mwe%2@(w)‘ <\/127Te“’ —w(1 <I>(w))+)] .

By casing out according to the sign of w and differentiating, one can show that the term in the brackets
attains its maximum value of /2/7 at w = 0.

It remains only to derive the second derivative bound in the absolutely continuous case. For this, note that

) = o fa(w) + )
= fu(w) + wfy(w) + I’ (w)
= (1+ w?) f(w) + wh(w) + I (w).
Using our previous estimates,

(1 +w?) fu(w) + wh(w)

Va1 4w (1_ / B () (1) ds + B(uw )/Ooh’(u)(l—@(u))du>

w

(u)) du

— 00

er/w h’(u)q)(u)dufw/w W (u)(1—@
- [w— Vare's (1+w?)(1 —@(w))] /_: B () ® (u) du
— [w + \/%e%(l +w2)<I>(w)} /:O W (u)(1 — ®(u)) du.

Now the lower bound in Lemma 11.38 ensures that w — v/2me’s (14 w?)(1—@(w)) <0 for all w, and this
in turn implies w + Zwesz(l +w?)®(w) > 0 for all w.
The triangle inequality thus gives

(1+w2)fh(w)+7~UE( ’<cl‘w \/7@2( +w 1_ ‘/
+C1’w+\ﬁe2 1+w ’/ 1,

= (—w + \/ﬂe%(l +w?)(1 - @(w))) (u@(w) + N

5~
S~—" j
9]
I\J‘EM
N—

)+

+a (w + \/ﬂe%(l + wQ)Q(w)) <w(1 - d(w

S|
3

Q\
N———

= (—w + \/ﬂew?z(l +w?)(1 - @(w))) (wfb(w) + e~

g~
3

M‘EN
— SN—

+a (w + \/ﬂe%(l + w2)<I>(w)> (—w(l - P(w)) + e 2) .

N
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A little arithmetic shows that this final expression is equal to ci, so
|1 ()] < | (1 +w?) fo(w) + wh(w)| + [h(w)| < 26

for all w as desired.

83



	Introduction
	First Properties
	Constructing Probability Spaces
	Random Variables
	Independence
	Expectation
	Further Properties
	Convergence in Probability and the WLLN
	Borel-Cantelli Lemmas
	Stein's Method and the CLT
	Conditional Expectation
	Appendix

